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Abstract

This article presents a description and methodology for building a kinematics model for the formation of two-

wheeled mobile robots transporting a beam using Denavit-Hartenberg notation. The simple and inverse kinematics
tasks of this formation were solved. Solutions of kinematics tasks are presented in junction coordinates and global
coordinates. The obtained results were simulated using the Matlab—Simulink package together with animation of the
solution using a programmed emulator of robot work.
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1. Introduction

Currently, autonomous vehicles are increasingly used
in transporting objects around factory production halls,
warehouses, or storage yards. Many of the large-scale goods
to be transported present a problem because a single robot is
not able to transport them, and building specialized transport
machinery may not be cost-effective. The idea of transporting
objects using formations consisting of several robots, which
after completing a given task, can be used in a different
configuration to carry out the next tasks, comes from the world
of nature. This approach is economically justified because a
given type of robot can be used for various purposes.

The subject of transporting objects by robot formations has
been repeatedly covered in scientific works such as work
on, for example, the problem of pushing a box [1], pushing
a considerable weight having its own support in the form of
wheels [2], transporting an object located above the robots
[3], moving an object by robots located adjacent to them
[4], or beam transport by two robots [5]. When constructing
a control system, it is necessary to know the mathematical
model of the kinematics of the examined transport system,
which will be used to build a mathematical model describing
the dynamics of that system or to build a control system based
on kinematics alone.

Kinematics can be described using the so-called classical
methods based on building a velocity plan of specific
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characteristic formation points [6] or using the so-called
Denavit-Hartenberg (DH) [7] notation, which is very often
used to describe the kinematics of multimember systems and
is widely used in robotics.

This article presents the problem of beam transport by two
AmigoBot wheeled mobile robots (WMR) based on DH
notation. It is assumed that the robots transport the beam
along the horizontal XY plane as shown in Figure 1.

The task of the robots is to transport a beam with a length of
I. The robots are connected to the beam at points H, and H,
by means of bolted joints, constituting fifth grade kinematic
pairs. Characteristic points are distinguished in the formation:
M, characteristic point of the formation being the center of
the transported beam; E, temporary center of rotation of the
formation; A, and 4,, points located on the axis of the wheels
of individual robots in the center between the wheels; B,, C,,
B,, and C,, points remaining the centers of individual robot
wheels; and K,, P,, K,, and P,, contact points of individual
robot wheels with the floor. Characteristic values are also
distinguished: x,, y,, coordinates of the characteristic point of
the formation in the basic (stationary) system; ¢, rotation angle
of the transported beam with respect to the basic system; [,
distance between points and A or B and C; , distance of the
beam attachment point with the robot from point 4; r, radius
of the robot driving wheel; By By rotation angles of individual
robots relative to the transported beam (formation system);

a,,a,,a,, a,, rotation angles of the wheels driving the robots.
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Figure 1. Formation of two-wheeled mobile robots transporting a beam.

In the case of these angles, the following symbols have been
adopted: the first digit indicates the number of the wheel and
the second digit indicates the number of the robot.

The AmigoBot WMRs used have, in addition to two driving
wheels, a self-adjusting support wheel, but this has been
omitted in the creation of the model assuming that it has a
negligible effect on the kinematics of the entire system.

2. Formulation of Kinematics Tasks

By analyzing the kinematics of formation, two tasks are solved.
The first task is a simple kinematics task, the purpose of which
in this case is to determine the kinematic parameters of the
transported beam in the form of velocity and location of the
M point, as well as the angular velocity and angle of rotation
of the beam, assuming that the kinematic parameters of the
drives are known. The second task is the inverse kinematics
task consisting in determining the kinematic parameters of the
drives assuming that the linear velocity of the characteristic
point of the formation is known, in this case the velocity of the
M point and the angular velocity of the transported beam.
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The solution of the inverse kinematics task is used to build
the control system, therefore it is usually more important than
the solution of the simple kinematics task, which can be used
to build, as in the case of the authors, an emulator of robot
formation work.

3. Performance of Motion Equations Based on
DH Notation

When starting to generate motion equations, the first step is
to associate local reference systems to each characteristic
point of the WMR formation transporting the beam and to a
stationary reference system called the base system (Figure 1).
After defining the systems, transformation matrices between
these systems were introduced.

cos(p) —sin(p) 0 xy

7. . = |sin(g) cos(@) 0 yy
0~f 0 0 1 7 M

0 0 0 1



Equation (1) shows the transformation matrix of the system
associated with the beam at point M to the base system.

[cos(Bry) —sin(Biy) 0 2
Trm = sin(Brs) cos(By) 0 0 )
0 0 1 0
0 o o0 1
cos(r) = sin(Byy) 0 1
Tr_pp = Si"(ﬂzf) COS(Bzf) 0 0 (3)
0 0 1 0
0 0 0 1

The next two matrices written in the dependencies (2) and
(3) are the transformation matrices between points H, and H,
associated with individual robots in the system associated

with the transported beam.
1 0 0 —I
01 0 O

T 4: =
0 0 0 1

Dependency (4) presents the transformation matrix from the

system at 4, of a given robot to the system at H, of this robot,
where is the robot number.

[sin(ay;) cos(a;;) O
s | 0 0 1 -
AP N cos(ayy)  —sin(ag) 00 ©)
0 0 0 1
[sin(a,,) cos(ay,;) 0 O
R B 0 1
AT cos(ay,) —sin(ay) 0 0 (6)
0 0 0 1
[sin(a;,) cos(a;,) O
0 0 1 -l
Thy—ps = 1 7)
Az=B2 cos(ay,) —sin(a;,) 00
0 0 0 1
[sin(a,,) cos(ay,) 0 O
0 0 1 1
Tao_c2 = 1 8
A27C2 T cos(ay,) —sin(ay) 0 0 ®)
0 0 0 1

The above four equations (5)—(8) show the transformation
matrices between systems associated with points B, and B, to
the system associated with point and systems associated with
points B, and C, to the system associated with point 4,.

To transform the system associated with a given characteristic
point of the WMR formation, the transformation matrix
between subsequent systems was multiplied to the base
system to obtain

To_p1 = To—f ’ Tf—Hl *Ty1-a1 " Tar-p1 9)

To—c1 = To—y " Tr—nur " Tu1-a1 " Tar—c1 (10)

(11)

To_p = To—f ' Tf—HZ “Thz-a2 " Taz-B2

To—c2 =To—g " Tr—nz * Trz—a2 " Tar—c2 (12)

Dependencies (9)—(12) are transformation matrices of
reference systems associated with points B,, C,, B,, and C, to
the base system.

Next the vectors of coordinates of the contact points of the robot
wheels with the floor in local reference systems associated with
the centers of the wheels were determined to obtain

[—1 cos(ay1)]
rsin(ay,)
0
1

Pk1 (13)

—1r cos(ayq)]
rsin(a,,)
0
1

pp1 = (14)

[—1 cos(ay;)]
rsin(ay,)
0
1

Pk2 (19)

—1r cos(ay,)]
rsin(a,,)
0
1

Pp2 = (16)

The velocities of the contact points of individual robot wheels
with the floor are described by the dependencies

vg1 = Top1Pi1 (17)

Vp1 = Toc1Pp1 (18)

Va2 = TopaPk2 (19)

Vpz = TocaPr2 (20)

After taking into account dependencies (1)—(8) in (9)-(12),
dependencies were obtained determining the transformation
matrices of the systems associated with points B, C,, B,
and C, to the base system, which were then differentiated in
relation to time and substituted together with the dependencies
(13)—(16) to (17)—(20). It was also assumed that there was no
longitudinal and transverse slippage of robot wheels, therefore
the left sides of equations (17)—(20) are zero vectors.
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After consideration of the earlier conditions, the following were
finally received:

cos((p + ﬁlf) L+ sin((p + ,Blf) I3 — %sin (p] 1]

0
8 Yu + [sm(qo + Blf) - cos(qo + ﬁlf) I3+ ; cos (p] 10
0 0
0 (21)

cos((p + ﬁlf) I+ sm((p + ﬁlf) l3][i’1f - cos((p + ﬁlf) raqq
[sm((p + ﬁlf) L - cos((p + ﬁlf) 13],81f - sm((p + ﬁlf) raqq

0
0
0 cos((p + p’lf) = sm((p + ﬂlf) I3+ ;sm (p] 1]
g sm((p + ,31f) L+ cos(qo + ﬁlf) I3 — %cos (p] 10
0 0
0
(22)
—[cos((p + ﬁlf) L - sin((p + ﬁlf) l3]B1f - cos((p + ﬁlf) rdyq
—[sin(q) + ﬁlf) L+ cos((p + ﬁ1f) l3][?1f - sin((p + ﬂ1f) Ty,
0
0
0 [J&M + [cos((p + ﬁzf) L+ sin((p + ﬁzf) I3+ ésin (p] @
8 =|yu + [sin((p + ﬁzf) L - cos((p + ﬁzf) I3 — écos (p] @
0 0
0
(23)
+[cos(@ + Bar) Ly + sin(@ + Baf) 1s|Bay — cos(p + Baog) Ty,
+[sin((p + [)’Zf) L - cos((p + [)’Zf) l3]ﬁ2f - sin((p + Bzf) Tdq;
0
0
0 Xy — [cos((p + ﬁzf) - sin((p + Bzf) I3 — ésin (p] @
8 =|yy — [sin((p + Bzf) L+ cos((p + ﬂzf) I; + écos go] @
0
0
L 0
(24)

—[cos((p + ﬁzf) L - sin((p + [f’zf) l3]Bzf - cos((p + ﬂzf) ro'czz]
—[sin((p + ﬁzf) I + cos((p + [?zf) l3]Bzf - sin((p + ﬁzf) Ty,
0

0

The obtained equations (21)—(24) are kinematic equations of
motion of two WMR formations transporting a beam, which
can be solved depending on the input data by solving a simple
or inverse kinematics problem.

4. Solution of Kinematics Tasks

The whole calculation procedure presented in Section 3
was carried out using the Maple™ program, which is a very
convenient tool for symbolic and matrix—vector calculations.
Maple was also used to determine kinematics tasks.
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4.1. Solution of the simple kinematics task

As mentioned in Section 2, solving the simple kinematics
task in the analyzed case comes down to determining the
kinematic parameters of the transported beam, assuming
that the kinematic parameters of the drives are known in the
form of angular velocities of individual wheels of the robots
transporting the beam.

By solving the systems of equations (21)—(24), the following

equations were obtained:

Xy = reos(othy) (d1q +éz0) + reos(ohy) (dyz + dz2)
4 4
) ] (25)
B rls sm((p + ﬂlf) (s — iyy) — rls sm(<p + ﬁzf) (s — ry)
—4l1 11 21 —411 12 22
_ rsin(q:+ﬂ1f) (dyy + d21) " rsin(iﬂ?zf) (dlz + dzz) 26)
rl; cos(p + ri; cos(¢p +
S LA ((,0 ﬁlf) (d11 —dz1) + S ((p ﬁZf) (d12 — dyp)
41, 4l
_ rcos(p+Pa2f) (Gip + Gpy) — rcos(p+Pif) (dyy + 1) (27)

2lsino 2lsino

Additionally, the angular velocities of the robots were
determined to obtain

ﬁlf r(Lsin@+1; cos(o+P1f)-13 sm((pﬂ?lf)) (28)

2llsing

‘r( lsing+l, cos(<p+[31f)+l3 sm((p+{31f))

2l lsing (28)
"( Uy cos(p+Bap)+13 51”(§0+52f)) T( 1y cos(p+B5)-13 51”(‘0"‘32[’))
2l;lsing 2l1lsing @22
4 _ T(lacos(o+Bas)- lz“"(‘ﬂ*'ﬁif)) r(ucus(¢+ﬂ1f)+13sm(<a+t>’1f))
2f ~ 2l1lsing 2l1lsing
(29)

r( Lsin -1y cos(p+Bof)— l3sm((p+ﬂzf))
2l1lsing

r(lsm(a llcas((a+ﬁ2f)+l3SLn(¢+ﬁ2f))
2l1lsing

Rotation angles of robot frames and their angular velocities
are measured in junction coordinates; to get the global
coordinates, the following dependencies were used:

Br =@ + Puif (30)
Bz =@+ Bay (31)
By = ¢+ Puy (32)
Br =&+ By 33)

Taking into account equations (30)—(33) in (25)—(29), the
following equations were obtained:

. _ (rcosPy rilzsinpy rcosfBy |, rizsinfq) .
xM_(T —)dnnt — T )%z

41, 41,
T cos B, riz sin f,
(A

4 4l

(34)

(r co45 B2 + rlz sin 62) az

) Az + 41,



. rsinfy, | rig cosﬁl) . (r sinfiy rilg cosﬁl) .
= a - a
Ym ( P 41, ut{—y, 41, 21

(35)
Tsin rls cos . Tsin rl3 cos .
+( B2 41 ﬁz) 1y +( B2 _ 13 ﬁz) o
4 4ly 4 4ly
. T cos rilz sin . T cos rizsin .
(p:(_ sy Tl 'ﬁl)alﬁ_(_ shy_ Tl 'Bl)an
2lsing 2l lsing 2lsing 2l lsing
(36)
rcosf, rizgsinf;) . rcosf, | rizsinfy) .
P - A2 - - 22
2lsing 2llsing 2lsing 2llsing
B _r @ r @
1= 5, % Ty G (37)
B _r @ r @
2 =5 G = 5 (38)

Equations (34)—(36) provide a solution to the simple kinematics
problem enriched by equations (37) and (38) that were used
to build the emulator of formation work.

4.2. Solution of the inverse task of kinematics

While solving the inverse kinematics task, it is assumed that
the kinematic parameters of the transported solid are known
in the form of the linear velocity of the characteristic point
of the formation and the angular velocity of the transported
beam. The kinematic parameters of the drives are sought,
i.e., the angular velocities of the wheels driving the robots. By
performing the procedure of solving equations (21)—(24) with
regard to the variables a,, @, ¢, @, the following equations

1"’ a21’ a12’ 022’
were obtained:

_ 2(13 cos(@+B1f) =l sin(@+B1s))im n 2(1y cos(p+Byf)+ls sin(@+B1f))ym
2rl3 2rly

dll
(39)
+ (lll cos Byp+izlsin Blf)(p

2ris

_ 2(13 cos(p+Byf)+ly sin(@+B1f))im _ 2(1y cos(p+B1f)—ls sin(@+B1f))ym
2ri3 2ris

a1

(40)
(1L cos Byp—lslsinByf)d
2rig

_ 2(13 cos(¢+B2f)—ll sin((p+ﬁzf))5cM + 2(11 cas(q)+,82f)+l3 sin((p+Bzf))yM

a
12 2ri3 2ri3

(41)
(111 cos Bop+lslsin Bof)d
2rl3

_ 2(1z cos(@+Bag)+ly sin(@+B2r))im _ 2(1y cos(p+B2f)—ls sin(@+B2f))ym
2ri3 2ri3

az2

(42)
+ (lll cos Bar—lzlsin Bzf)(p
2ris

In addition, the angular velocities of the robot frames were
determined.

_ —2xm sin(@+B15)+2ym cos(@+B1f)+Lcos Bi _

by = = o @3)
. =23y sin(@+Bar)+2yy cos(p+P2f)—1cos Bap 5
Poy = — 21) o (orboy)icostut g (44)

By substitution of dependencies (30)—(33) with (39)—(44), the
following equations were obtained:

_ 2(l3 cos B1=1y sin f1)im + 2(14 cos By +lz sin B1)ym+(l L cos(p—PB1) =zl sin(—F1))

11 2rl3 2rl3 (45)
. _ 2z cos pitlysinBr)iy | =21 cos Bi=lz sin f1)ym—(lil cos(@—B1)+13Lsin(9—p1))¢
%21 = 2rly + 27l (46)
Qyy = 2(13 cos ﬁzz—rlll sin B2)xy + 2(14 cos Ba+lz sin ﬁz)YM—(ZleOS(fl’—Bz)—lal sin(@=P2))¢ (47)
3 3
Qyy = 2(13 cos ﬁzz";lll sin Bp)iym + —2(ly cos Bp—13 sin BZ)YM-'-(Zlii cos(p—P2)+l3lsin(9—F2))p (48)
3 3
5 _ —2Xp Sin B1+2ypy cos B1+1p cos(Br—p)
b= “9)
5 —2Xpp Sin Ba+2y ) €0s Br—Lp cos(Br—p)
f, = “Husinbat2in 2 2 (50)
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Equations (45)—(48) are a solution to the inverse kinematics
problem presented in global coordinates, supplemented by
equations (49) and (50) and they can be used for further
analysis of formation.

5. Simulations

Simulations of the solutions obtained were carried out in the
Matlab/Simulink environment. A robot emulator was designed
to visualize the behavior of the robots, generating a view
of the robots along with the transported object at a certain
frequency.

The transport task is to transport a beam with a length of
[ =1 [m] in Figure 2 with a characteristic point moving along
the track shown in Figure 3, and the linear velocity of this point
will always be tangent to the transported beam.

Initial conditions were assumed: point M of the beam is at
the beginning of the global reference system, and the angle
between the beam and the x axis is 0 [rad].

To ensure movement of the beam according to the assumed
criteria, the linear velocity of point M shown in Figure 4 and the
angular velocity of the transported beam ¢ in Figure 5 were
generated, both of these velocities must be at least class C2 [8].
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Figure 2. Definition of the transport task.

With the parameters selected in this way, the following phases
of movement can be distinguished, several of which are
repeated: acceleration, driving in a straight line at set velocity,
entering a corner, turning a corner, and braking.
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The task of the model built in Simulink was to solve the inverse
kinematics task that resulted in determining the angular
velocity of the wheels driving the robots. After performing the
simulation, the results for the first robot shown in Figure 6 and
the second robot shown in Figure 7 were obtained.

The image obtained using the emulator of robot work is shown
in Figure 8.

After analyzing the animation of robot movement obtained
using the work emulator and the received image of the
animation record, it was not found that the robots could move
incorrectly. No drift of the robots or incorrect orientation of
the robot frames during the movement was observed, which
proves the correctness of the solutions obtained.

6. Conclusion

The method presented in this article of the kinematics of a
WMR formation using DH notation is universal and convenient
toimplement. An additional advantage is the possibility of using
software for symbolic and matrix—vector calculations, which
significantly speeds up the process of generating kinematics
equations compared with other methods. In this work, a
formation consisting of two robots was modeled, but it is very
easy to extend the problem for n-robots transporting a bulky
object. The obtained results are consistent with the results
obtained based on other methods [9]. Further conclusions are

h
o
T

4 3 2

Figure 3. Trajectory of the M point
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Figure 7. Angular velocities of robot 2 driving wheels.

directed to a need for more research regarding the interaction
of robots with the transported object and the environment.

To

sum up, the obtained kinematics model and the

methodology of obtaining it can be used in researching more
complex formations, as well as to build a dynamics model.
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