Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Modification of chitosan : a concise overview
Języki publikacji
Abstrakty
Chitosan is the most important derivative of chitin, a polysaccharide found in the exoskeleton of shellfish like shrimp and crab. It is a product of deacetylation of chitin under alkaline conditions or enzymatic hydrolysis in the presence of chitin deacetylase. Both chitin and chitosan are linear polysaccharides and are chemically defined as copolymers consisting of varying amounts of β-(1→4)- linked 2-acetamido-2-deoxy β-D-glucopyranose (GlcNAc) and 2-amino-2-deoxy- β-D-glucopyranose (GlcN). The difference between chitin and chitosan lies in the content of GlcNAc and GlcN units. Chitin samples contain a high content of Glc- NAc units. Due to excellent properties of chitosan, such as biocompatibility, biodegradability, hydrophilicity, non-toxicity, cationicity, ease of modification, film forming ability, affinity to metals, protein and dyes, etc., this polymer has found applications in medicine and pharmacy, as food additive, antimicrobial agent, in paper and textile industry, in environmental remediation and other industrial areas. The presence of functional groups, reactive amino and hydroxyl groups, in chitosan backbone makes it suitable candidate for chemical modification. Chemical modification of chitosan to generate new polymers with useful physicochemical properties and distinctive biological functions is of key interest because it would not change the fundamental skeleton of the polymer. In this article the main three methods of chitosan modification: substitution reactions, reactions leading to the chain elongation and/or molecular weight increasing and methods of depolymerization are shortly characterized. Moreover, the selected methods of chitosan modification, i.e. quaternization, alkylation, acylation, carboxyalkylation, phosphorylation, sulfation, graft copolymerisation, crosslinking and depolymerization are discussed in more detail. A special attention is drawn to chitosan crosslinking with low and high molecular compounds. Chitosan modification by covalent and ionic crosslinking allows to obtain polymer materials with improved mechanical and chemical resistance and suitable for example for chitosan hydrogel membranes formation. Keywords: chitosan, chitosan modification, chitosan derivatives, crosslinking
Wydawca
Czasopismo
Rocznik
Tom
Strony
657--679
Opis fizyczny
Bibliogr. 81 poz., rys., schem., tab.
Twórcy
autor
- Katedra Chemii Fizycznej i Fizykochemii Polimerów, Wydział Chemii, Uniwersytet Mikołaja Kopernika w Toruniu, ul. Gagarina 7, 87-100 Toruń
autor
- Katedra Chemii Fizycznej i Fizykochemii Polimerów, Wydział Chemii, Uniwersytet Mikołaja Kopernika w Toruniu, ul. Gagarina 7, 87-100 Toruń
autor
- Katedra Chemii Fizycznej i Fizykochemii Polimerów, Wydział Chemii, Uniwersytet Mikołaja Kopernika w Toruniu, ul. Gagarina 7, 87-100 Toruń
Bibliografia
- [1] M.H. Struszczyk, Polimery, 2002, 47, 316.
- [2] M.G. Peter, [w:] Biopolymers, E.J. Vandamme, S. De Baets (red.), Wiley, Weinheim, 2002, t. 6, s. 481.
- [3] M. Mucha, Chitozan – wszechstronny polimer ze źródeł odnawialnych, Wydawnictwa Naukowo--Techniczne, Warszawa 2010.
- [4] T.S. Demina, A.B Gilman, T.A. Akopova, A.N. Zelenetskii, High Energ. Chem., 2014, 48, 293.
- [5] M. Rinaudo, Prog. Polym. Sci., 2006, 31, 603.
- [6] M.H. Struszczyk, Polimery, 2002, 47, 396.
- [7] T. Chakrabarty, M. Kumar, V.K. Shahi, [w:] Biopolymers, M. Elnashar (red.), InTech 2010, rozdz. 10, s. 201. Dostępny w Internecie: http://www.intechopen.com/articles/show/title/chitosan-based-membranes.
- [8] S.K. Kim (red.), Chitin, Chitosan, Oligosaccharides and Their Derivatives, CRC Press, Boca Raton 2011.
- [9] Z. Florjańczyk, S. Penczek (red.), Chemia polimerów, Oficyna Wydawnicza Politechniki Warszawskiej, Warszawa, 1995, t. II.
- [10] J.F. Rabek, Współczesna wiedza o polimerach, Wydawnictwo Naukowe PWN, Warszawa 2008.
- [11] K. Kelar, Modyfikacja polimerów, Wydawnictwo Politechniki Poznańskiej, Poznań 1991.
- [12] D. Braun, H. Cherdron, M. Rehahn, H. Ritter, B. Voit, Polymer Synthesis: Theory and Practice. Fundamentals, Methods, Experiments, Springer, Berlin, Heidelberg 2001.
- [13] J.J. Meister, Polymer Modification: Principles, Techniques and Applications, Marcel Dekker, New York 2000.
- [14] W. Królikowski, Z. Rosłaniec, Kompozyty, 2004, 4, 3.
- [15] Z. Florjańczyk, M. Dębowski, E. Chwojnowska, K. Łokaj, J. Ostrowska, Polimery, 2009, 54, 609.
- [16] E. Spasówka, E. Rudnik, J. Kijeński, Polimery, 2006, 5, 615.
- [17] R.L. Lundblad, [w:] Chemical Modification of Biological Polymers, R.L. Lunberg (red.), CRC Press, Boca Raton 2011, s. 383.
- [18] P. Tomasik, [w:] Chemical and Functional Properties of Food Saccharides, P. Tomasik (red.), CRC Press, Boca Raton, 2004, s. 123.
- [19] I. Cumpstey, ISNR Org. Chem., vol. 2013, article ID 417672.
- [20] H. Struszczyk, [w:] Chemia polimerów, Z. Florjańczyk, S. Penczek (red.), Oficyna Wydawnicza Politechniki Warszawskiej, Warszawa 1998, t. III, s. 57.
- [21] G.G. D’Ayala, M. Malinconico, P. Laurienzo, Molecules, 2008, 13, 2069.
- [22] K. Kurita, Prog. Polym. Sci., 2001, 26, 1921.
- [23] H. Sashiwa, S. Aiba, Prog. Polym. Sci., 2004, 29, 887.
- [24] K. Kurita, Mar. Biotechnol., 2006, 8, 203.
- [25] V.K. Moruya, N.N. Inamdar, React. Funct. Polym., 2008, 68, 1013.
- [26] K.V. Harish Prashanth, R.N. Tharanathan, Trends Food Sci. Tech., 2007, 18, 117.
- [27] D. Sahoo, P.L. Nayak, [w:] Biopolymers: Biomedical and Environmental Applications, S. Kalia, L. Averous (red.), Wiley, Hoboken 2011, s. 129.
- [28] J. Li, L. Deng, F. Yao, [w:] Chitosan – Based Hydrogels. Functions and Applications, K. Yao, J. Li, F. Yao, Y. Yin (red.), CRC Press, Boca Raton 2012, s. 39.
- [29] J. Ji, L. Wang, H. Yu, Y. Chen, Y. Zhao, H. Zhang., W.A. Amer, Y. Sun, L. Huang, M. Saleem, Polym. Plast. Technol. Eng., 2014, 53, 1494.
- [30] N. Chopin, X. Guillory, P. Weiss, J. Le Bideau, S. Colliec-Jouault, Curr. Org. Chem., 2014, 18, 867.
- [31] A. Anitha, N.S. Rejinold, J.D. Bumgardner, S.V. Nair, R. Jayakumar, [w:] Chitosan-Based Systems for Biopharmaceuticals: Delivery, Targeting and Polymer Therapeutics, B. Sarmento, J. das Neves (red.), Wiley, Chichester, 2012, s. 107.
- [32] D. Thomas, S. Thomas, [w:] Biopolymer Nanocomposites: Processing, Properties and Applications, A. Dufresne, S. Thomas, L.A. Pothen (red.), Wiley, Hoboken 2013, s. 33.
- [33] A. Jain, A. Gulbake, S. Shilpi, A. Jain, P. Hurkat, S.K. Jain, Crit. Rev. Ther. Drug Carrier Syst., 2013, 30, 91.
- [34] R.A.A. Muzzarelli, C. Muzzarelli, Adv. Polym. Sci., 2005, 186, 151.
- [35] N.M. Avec, J.F. Mano, Int. J. Biol. Macromol., 2008, 43, 401.
- [36] M. Prabaharan, J. Biomater. Appl., 2008, 23, 5.
- [37] M.E.I. Badawy, E.I. Rabea, Int. J. Carbohyd. Chem., vol. 2011, article ID 460381.
- [38] T.K. Giri, A. Thakur, A. Alexander, A.H. Badwaik, D.K. Tripathi, Acta Pharm. Sinic. B, 2012, 2, 439.
- [39] S.K. Yong, M. Shrivastava, P. Srivastava, A. Kunhikrishnan, N. Bolan, Rev. Environ. Contam. T., 2015, 233, 1.
- [40] J. Ma, Y. Sahai, Carbohyd. Polym., 2013, 92, 955.
- [41] S.K. Shukla, A.K. Mishra, O.A. Arotiba, B.B. Mamba, Int. J. Biol. Macromol., 2013, 59, 46.
- [42] A. Owczarczak, G. Schroeder, [w:] Chemiczna funkcjonalizacja powierzchni dla potrzeb nanotechnologii, G. Schroeder (red.), Wydawnictwo Cursiva, Poznań 2011, s. 131.
- [43] G.Z. Kyzas, D.N. Bikiarisd, Mar. Drugs, 2015, 13, 312.
- [44] J. Wang, C. Chen, Bioresource Technol., 2014, 160, 129.
- [45] J. Wang, C. Chen, Carbohyd. Polym., 2014, 113, 115.
- [46] D.J. Macquarrie, J.J.E. Hardy, Ind. Eng. Chem. Res., 2005, 44, 8499.
- [47] S. Ahmed, S. Ikram, Int. J. Pharm. Sci. Res., 2015, 6, 14.
- [48] I. Aranaz, R. Harris, A. Heras, Curr. Org. Chem., 2010, 14, 308.
- [49] V.K. Mourya, N.M. Inamdar, A. Tivari, Adv. Mat. Lett., 2010, 1, 11.
- [50] R. Jayakumar, N. Selvamurugan, S.V. Nair, S. Tokura, H. Tamura, Int. J. Biol. Macromol., 2008, 43, 221.
- [51] R. Jayakumar, N. Nwe, S. Tokura, H. Tamura, R. Jayakumar, J. Biol. Macromol., 2007, 40, 175.
- [52] S.K. Yong, N.S. Bolan, E. Lombi, W. Skinner, Crit. Rev. Env. Sci. Technol., 2013, 43, 1741.
- [53] R. Jayakumar, M. Prabaharan, R.L. Reis, J.F. Mano, Carbohyd. Polym., 2005, 62, 142.
- [54] M.J. Zohuriaan-Mehr, Iran. Polym. J., 2005, 14, 235.
- [55] M.W. Sabaa, [w:] Polysaccharide Based Graft Copolymers, S. Kalia, M.W. Sabaa (red.), Springer, Berlin, Heidelberg 2013, s. 111.
- [56] N.M. Alves, J.F. Mano, Int. J. Biol. Macromol., 2008. 43, 401.
- [57] J. Berger, M. Reist, J.M. Mayer, O. Felt, N.A. Peppas, R. Gurny, Eur. J. Pharm. Biopharm., 2004, 57, 19.
- [58] J. Berger, M. Reist, J.M. Mayer, O. Felt, R. Gurny, Eur. J. Pharm. Biopharm., 2004, 57, 35.
- [59] F.L. Mi, H.W. Sung, S.S. Shyu, C.C. Su, C.K. Peng, Polymer, 2003, 44, 6521.
- [60] Y. Yin, J. Li, [w:] Chitosan - Based Hydrogels: Functions and Application, K. Yao, J. Li., F. Yao, Y. Yin (red.), CRC Press, Boca Raton 2012, s. 179.
- [61] M.C. Chen, F.L. Mi, Z.X. Liao, H.W. Sung, Adv. Polym. Sci., 2011, 243, 185.
- [62] S. Aggarwal, S. Pahuja, Int. Res. J. Pharm., 2013, 4, 45.
- [63] R.A.A. Muzzarelli, Carbohyd. Polym., 2009, 77, 1.
- [64] F.L. Mi, S.S. Shyu, C.K Peng, J. Polym. Sci. A: Polym. Chem., 2005, 43, 1985.
- [65] J. Ostrowska-Czubenko, M. Pieróg, Pol. J. Appl. Chem., 2009, 53, 155.
- [66] J. Ostrowska-Czubenko, M. Pieróg, M. Gierszewska-Drużyńska, Pol. J. Appl. Chem., 2011, 55, 49.
- [67] E. Dashtimoghadama, M.M. Hasani-Sadrabadia, H. Moaddele, Polym. Adv. Technol., 2010, 21, 726.
- [68] M. Gierszewska-Drużyńska, Trójskładnikowe membrany hydrożelowe do zastosowań biomedycznych i przemysłowych, rozprawa doktorska, Uniwersytet Mikołaja Kopernika, Toruń, 2010.
- [69] A.V. Il’ina, V.P. Varlamov, Appl. Biochem. Microbiol., 2005, 41, 9.
- [70] Y. Luo, Q. Wang, Int. J. Biol. Macromol., 2014, 64, 353.
- [71] M. Gierszewska-Drużyńska, J. Ostrowska-Czubenko, Polimery, 2007, 52, 517.
- [72] J.M. Rosiak, I. Janik, S. Kadłubowski, M. Kozicki, P. Kujawa, P. Stasica, P. Ulański, Radiation Formation of Hydrogels for Biomedical Applications. The International Atomic Energy Agency`s Report, 2002, [on line], [dostęp 2016-07-10]. Dostępny w Internecie: AEA report - Radiation Formation of Hydrogels for Biomedical ... - MiTR mitr.p.lodz.pl/biomat/old_site/raport/book_index.html
- [73] M. Padmanabhan, L.S. Nair [w:]Chitin and Chitosan for Regenerative Medicine P.K. Dutta (red.), Springer, New Delhi, Heildelberg, New York 2016, s.3.
- [74] V.K. Mourya, N.N. Inamdar, Y.M. Choudhari, Polym. Sci., 2011, 53, 583.
- [75] G. Lodhi, Y.S. Kim, J.W. Hwang, S.K. Kim, Y.J. Jeon, J.Y. Je, C.B. Ahn, S.H. Moon, B.T. Jeon, P.J. Park, BioMed Res. Int., vol. 2014, article ID 654913.
- [76] B.B. Aam, E.B. Heggset, A.L. Norberg, M. Sorlie, K.M. Varum, V.G.H. Eijsink, Mar. Drugs, 2010, 8, 1482.
- [77] S.K. Kim, N. Rajapakse, Carbohyd. Polym., 2005, 62, 357.
- [78] D. Feldman, J. Macromol. Sci., Part A, 2016, 53, 55.
- [79] R.A. Hule, D.J. Pochan, MRS Bull., 2007, 32, 354.
- [80] E. Stodolak, A. Frączek-Szczypta, M. Błażewicz, Kompozyty, 2010, 10, 322.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5c38d94b-c434-487f-bd83-8b41d212a624