PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Quantitative Evidence for Direct Effects Between Earth-Ionosphere Schumann Resonances and Human Cerebral Cortical Activity

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The multiple quantitative similarities of basic frequencies, harmonics, magnetic field intensities, voltages, band widths, and energetic solutions that define the Schumann resonances within the separation between the earth and ionosphere and the activity within the human cerebral cortices suggest the capacity for direct interaction. The recent experimental demonstration of the representations of the Schumann resonances within the spectral densities of normal human quantitative electroencephalographic (QEEG) activity suggests a casual interaction. Calculations supported by correlations between amplitudes of the global Schumann resonances measured several thousands of km away (which were nearly identical to our local measurements) and the coherence and current densities or these frequency bands between cerebral hemispheres for a large population of human QEEG measures indicate that such interaction occurs. The energies are within the range that would allow information to be exchanged between cerebral and Schumann sources. The near-identical solution for current density from the increasing human population and background vertical electric fields suggests that changes in the former might determine the degree of coherence between the Schumann resonances. Direct comparisons of local Schumann measurements and brain activity exhibited powerful intermittent coherence within the first three harmonics. Implications of the contributions of solar transients, surface temperature, and rapidly developing technologies to modify the ionosphere‟s Schumann properties are considered.
Rocznik
Strony
166--194
Opis fizyczny
Bibliogr. 53 poz., rys., wykr., wz.
Twórcy
autor
  • Laurentian University, Sudbury, Ontario, P32 2C6, Canada
  • Laurentian University, Sudbury, Ontario, P32 2C6, Canada
Bibliografia
  • [1] M. A. Persinger, Frontiers in Neuroscience 6 (2012), article 19.
  • [2] M. A. Persinger, International Letters of Chemistry, Physics and Astronomy 11 (2014) 24-32.
  • [3] A. Nickolaeno, M. Hayakawa, Schumann Resonances for Tyros. Springer, Tokyo, 2014.
  • [4] H. L. König, A. P. Krueger, S, Lang, W. Sonnig, Biologic Effects of Environmental Electromagnetism. Springer-Verlag, New York, 1981.
  • [5] N. Cherry, Natural Hazards 26 (2002) 279-331.
  • [6] W. Hume-Rothery, Electrons, Atoms, Metals and Alloys 1963 Dover, N.Y.
  • [7] A. V. Streltsov, T. Guido, B. Tulegenov, J. Labenski, C.-L. Chang, Journal of Atmospheric and Solar-Terrestrial Physics 119 (2104) 110-115.
  • [8] S. M. Blinkov, I. I. Glezer, The Human Brain in Figures and Tables: A QuantitativeHandbook. Plenum Press, New York, 1968.
  • [9] B. Pakkenberg, J. G. Gundersen, The Journal of Comparative Neurology 384 (1997)312-320.
  • [10] D. C. Van Essen, H. A. Drury, The Journal of Neuroscience 17 (1997) 7079-7102.
  • [11] A. Bragin, C. L. Wilson, R J. Staba, M. Reddick, I. Fried, J. Engel, Annals of Neurology 52 (2002) 407-415.
  • [12] E. Niedermeyer, F. Lopes Da Silva, Electroencephalography: Basic Principles, Clinical Applications and Related Fields. Urban and Schwartzenbert, Baltimore, 1987.
  • [13] D. Kahn, H. F. Pace-Schott, J. A. Hobson, Neuroscience 78 (1997) 13-38.
  • [14] P. L. Nunez, Neocortical Dynamics and Human EEG Rhythms. Oxford University Press, New York, 1995.
  • [15] R. R. Llinas, D. Pare, Neuroscience 44 (1991) 521-535.
  • [16] T. Koenig, L. Prichep, L. Lehmann, D. V. Sosa, E. Braker, H. Kleinlogel, R. Ishehart, E. R. John, NeuroImage 16 (2002) 41-48.
  • [17] D. Lehmann, W. K. Strik, B. Henggeler, T. Koenig, M. Koukkou, International Journal of Psychophysiology 29 (1998) 1-11.
  • [18] G. Ryskin, New Journal of Physics 11 (1995) 0603015.
  • [19] J. P. Wilswo, J. P. Barach, J. A. Freeman, Science 208 (1980) 53-55.
  • [20] C. Pantev, S. Makeig, M. Joke, R. Galambos, S. Hampson, C. Gallen, Proceedings for the National Academy of Sciences U.S.A. 88 (1991) 8996-9000.
  • [21] R. Sandyk, Journal of Alternative and Complimentary Medicine 3 (1997) 365-386.
  • [22] P. A. Anninos, N. Tsagas, R. Sandyk, K. Derpapas, International Journal of Neuroscience 60 (1991) 141-171.
  • [23] J. C. Booth, S. A. Koren, M. A. Persinger, International Journal of Neuroscience 115 (2005) 1039-1065.
  • [24] D.D. Sentman, in Handbook of Atmospheric Electrodynamics Vol I, H. Volland (Editor). CRC Press, Boca Raton, 1995.
  • [25] G. Buzaski, Neuron 33 (2002) 325-340.
  • [26] M. F. Bear, Proceedings of the National Academy of Sciences, U.S.A. 93 (1996) 13453-13459.
  • [27] D. G. Amaral, R. Insausti, in G. Paxinos (Ed) The Human Nervous System, Academic Press, New York, 1990, pp. 711-754.
  • [28] D. R. Corson, D. Lorrain, Introduction to Electromagnetism and Waves. W. H. Freeman, San Francisco, 1962. International Letters of Chemistry, Physics and Astronomy 20(2) (2014) 166-194
  • [29] R. C. Burke, M. A. Persinger, NeuroQuantology 11 (2013) 1-7.
  • [30] M. A. Persinger, S. A. Koren, International Journal of Neuroscience 117 (2007) 157-175.
  • [31] C-Y. T. Li, M-m. Poo, Y. Dan, Science 324(2009) 643-645.
  • [32] E. R. Graf, F. E. Cole in M. A. Persinger (ed) ELF and VLF Electromagnetic Field Effects, Plenum Press, N.Y., 1974.
  • [33] F. Aboitz, A. B. Scheibel, R. S. Fisher, E. Zaidel, Brain Research 2 (1992) 143-153.
  • [34] M. A. Persinger, Current Medicinal Chemistry 17 (2010) 3094-3098.
  • [35] P. Gloor, V. Salanova, A. Olivier, L. F. Quesney, Brain 116 (1993) 1249-1273.
  • [36] A. Alonso, R. Klink, Journal of Neurophysiology 70 (1993) 128-143.
  • [37] P. Gloor, The Temporal Lobe and Limbic System. Oxford, N.Y., 1997.
  • [38] H. E. Puthoff, Physical Review A General Physics 39 (1989) 2333-2342.
  • [39] M. Bordag, U. Mohideen, V. M. Mostepanenko, Physics Reports 353 (2001) 1-205.
  • [40] E. R. John, Mechanisms of Memory. New York: Academic Press, 1967.
  • [41] A. A. Minakov, A. P. Nikolaenko, L. M. Rabinovich, Radiofizika 35 (1992) 488-497.
  • [42] M. A. Persinger, International Letters of Chemistry, Physics and Astronomy 2 (2014) 15-21.
  • [43] M. A. Persinger, International Letters of Chemistry, Physics and Astronomy 19 (2014) 181-190.
  • [44] Tomasz Borowski, International Letters of Chemistry, Physics and Astronomy 11 (2013) 44-53.
  • [45] S. N. Ahmed, S. A. Kamal, K. A. Siddiqui, S. A. Husain, M. Naeem, Kar University Journal of Science 5 (1997) 19024.
  • [46] M. A. Persinger, L. S. St-Pierre, International Journal of Geosciences 5 (2014) 450-452.
  • [47] L. C. Tu, J. Luo, G. T. Gilles, Reports on Progress in Physics 68 (2005) 1-110.
  • [48] B. T. Dotta, K. S. Saroka, M. A. Persinger, Neuroscience Letters 513 (2012) 72-80.
  • [49] A. Delorme, S. MaKeig, Journal of Neuroscience Methods 134 (2004) 9-21.
  • [50] M. A. Persinger, The Open Biology Journal 6 (2013) 8-13.
  • [51] H. Volland, Handbook of Atmospherics Volume I, CRC Press, Boca Baton (Fla), 1982, pp. 66.
  • [52] R. Hill, Pure and Applied Geophysics 84 (1971) 67-74.
  • [53] M. A. Persinger, C. F. Lavallee, Journal of Consciousness Studies 19 (2012) 128-153.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5c33c1e5-853d-421c-b368-28f8b076240b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.