PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Description of a three-phase, four-wire system with a nonlinear receiver and an asymmetric voltage source using cpc power theory

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This article mathematically describes a three-phase, four-wire circuit in the case of a nonlinear, unbalanced load, asymmetry of the power source with a periodic, non-sinusoidal waveform. This description uses Currents' Physical Components (CPC) power theory for threephase circuits. Determining the energy flow between the source and the load is possible by decomposing the phase current into components depending on the physical nature of the phenomena in this circuit. Mathematical relationships were determined enabling decomposition into components depending on the direction of energy flow and the causes of their creation. A calculation example using the determined relationships and calculation results has been presented. The presented computational concept is important for mathematical analyzes in circuits with nonlinear three-phase receivers. Knowing the nature of physical phenomena, it is possible to perform measures that limit the value of the current supplying the load.
Twórcy
  • Koszalin University of Technology, Department of Energy, 15-17 Racławicka St., 75-620 Koszalin, Poland,
  • Koszalin University of Technology, Doctoral School, 2 Śniadeckich St., 75-453 Koszalin, Poland
Bibliografia
  • Currents Physical Components, nonlinear receiver, power theory
  • 1] Fryze S. (1931) „Moc rzeczywista, urojona i pozorna w obwodach elektrycznych o przebiegach odkształconych prądu i napięcia”. Przegląd Elektrotechniczny 7
  • [2] Buchholz F. (1950) “Das Begriffsystem Rechtleistung, Wirkleistung, totale Blindleistung”. Selbstverlag, Munchen, Germany
  • [3] Czarnecki L.S. (1989) “Reactive and unbalanced currents compensation in three-phase circuits under nonsinusoidal conditions”. IEEE Trans. IM, IM-38, No. 3, pp. 754-459.
  • [4] Czarnecki L.S. (1999) “Energy flow and power phenomena in electrical circuits illusions and reality”, Archiv fur Elektrotechnik 82(4)
  • [5] IEEE Standard Definitions for the Measurement of Electric Power Quantities under Sinusoidal Non-sinusoidal, Balanced or Unbalanced Conditions (2002), IEEE Std. 1459-2000
  • [6] Czarnecki L.S. (2005) „Moce w obwodach elektrycznych z niesinusoidalnymi przebiegami prądów i napięć”. Oficyna Wydawnicza Politechniki Warszawskiej
  • [7] Balci M.E., Hocaoglu M.H. (2009) “Comparative review of multi-phase apparent Power definitions”. International Conference on Electrical and Electronics Engineering – ELECO 2009, pp. 144-148, doi: 10.1109/ELECO.2009.5355309.
  • [8] Emanuel A.E. (2010) “Power definitions and the physical mechanism of power flow”. IEEE Press, John Wiley & Sons, Ltd.
  • [9] Czarnecki L.S., Toups T.N. (2014) “Working and reflected active powers of harmonice generating single-phase loads”. Przegląd Elektrotechniczny 90(11)
  • [10] Zajkowski K. (2017) “Settlement of reactive power compensation in the light of white certificates”. E3S Web of Conferences, 19, doi: 10.1051/e3sconf/20171901037 JAEEE Volume 5, No. 3 / 2023
  • [11] Czarnecki L.S. (2018) „Współczynnik mocy odbiorników elektrycznych”. Automatyka, Elektryka, Zakłócenia. Bezpieczeństwo, pomiary i niezawodność w elektroenergetyce., Gdańsk, Poland, pp. 38-47
  • [12] Zajkowski K., (2018) “Reactive power compensation in a three-phase power supply system in an electric vehicle charging station”. The Journal of Mechanical and Energy Engineering, 2(42), pp. 75–84. doi: 10.30464/jmee.2018.2.1.75
  • [13] Zajkowski K., et al. (2018) “The use of CPC theory for energy description of two nonlinear receivers”. MATEC Web of Conferences. doi: 10.1051/matecconf/201817809008
  • [14] Zajkowski K., Rusica I. (2019) “The method of calculating LC parameters of balancing compensators in a three-phase four-wire circuit for an unbalanced linear receiver”. IOP Conference Series: Materials Science and Engineering, 564, 12134. doi: 10.1088/1757-899x/564/1/012134
  • [15] Zajkowski K., Rusica I. (2019) “Comparison of electric powers measured with digital devices relative topowers associated with distinctive physical phenomena”. IOP Conference Series: Materials Science and Engineering, pp. 1–6. doi: 10.1088/1757-899x/564/1/012133
  • [16] Zajkowski K. (2020) “Two-stage reactive compensation in a three-phase four-wire systems at nonsinusoidal periodic waveforms”. Electric Power Systems Research, 184: 1–9. doi: 10.1016/j.epsr.2020.106296
  • [17] Czarnecki L.S., Almousa M. (2021) “Adaptive Balancing by Reactive Compensators of Three-Phase Linear Loads Supplied by Nonsinusoidal Voltage from Four-Wire Lines”. American Journal of Electrical Power and Energy Systems, 10(3), pp. 32-42
  • [18] Zajkowski K., Duer S. (2023) “Decomposition of the Voltages in a Three-Phase Asymmetrical Circuit with a Non-Sinusoidal Voltage Source”. Energies 16(22), 7616, doi: 10.3390/en16227616
  • [19] Zajkowski K., et al. (2023) “Cooperation of a Non-Linear Receiver with a Three-Phase Power Grid”, Energies 16(3), 1418, doi: 10.3390/en16031418
  • [20] Zajkowski K. (2014) “The method of solution of equations with coefficients that contain measurement errors, using artificial neural network”. Neural Computing and Applications, 24(2), pp. 431-439, doi: 10.1007/s00521-012-1239-0
  • [21] Smyczek J., Zajkowski K. (2004) “Simulation of overvoltages for switching off lagging load from mains”. 2nd International Industrial Simulation Conference, pp. 278–281
  • [22] Hanzelka, Z., Milanović, J. (2008) Principles of Electrical Power Control. In: Strzelecki, R., Benysek, G. (eds) Power Electronics in Smart Electrical Energy Networks. Power Systems. Springer, London, doi: 10.1007/978-1-84800-318-7_2
  • [23] Duer S., et al. (2013) “Designing of an effective structure of system for the maintenance of a technical object with the using information from an artificial neural network”. Neural Computing and Applications, 23(3-4), pp. 913-925, doi: 10.1007/s00521-012-1016-0
  • [24] Duer S., Zajkowski K. (2013) “Taking decisions in the expert intelligent system to suport maintenance of a technical object on the basis information from an artificial neural network”. Neural Computing and Applications, 23(7-8), pp. 2185-2197, doi: 10.1007/s00521-012-1166-x
  • [25] Siergiejczyk M., et al. (2015) “Modeling of Process of Maintenance of Transport Systems Telematics with Regard to Electromagnetic Interferences, In: Mikulski, J. (eds) Tools of Transport Telematics”. Communications in Computer and Information Science, 531, pp. 99-107, doi: 10.1007/978-3-319-24577-5_10
  • [26] Siergiejczyk M., et al. (2016) “Issue of reliability–exploitation evaluation of electronic transport systems used in the railway environment with consideration of electromagnetic interference”. IET Intell. Transp. Syst., 10, pp. 587–593, doi: 10.1049/iet-its.2015.0183
  • [27] Zajkowski K. (2017) “An innovative hybrid insulation switch to enable/disable electrical loads without overvoltages”. E3S Web of Conferences, 19. doi: 10.1051/e3sconf/20171901033
  • [28] Duer S., et al. (2018) “Analyses of the method development of decisions in an expert system with the use of information from an artificial neural network”. MATEC Web of Conferences, doi: 10.1051/matecconf/201817807002
  • [29] Krzykowski M., et al. (2019) “Assessment of the level of reliability of power supplies of the objects of critical infrastructure”. IOP Conference Series: Earth Environ. 214, 012018, doi: 10.1088/1755-1315/214/1/012018
  • [30] Montoya F.G., et al. (2021) “Vector Geometric Algebra in Power Systems: An Updated Formulation of Apparent Power under Non-Sinusoidal Conditions”. Mathematics 9, 1295.doi: 10.3390/math9111295
  • [31] Soljan Z., et al. (2021) “CPC-Based Minimizing of Balancing Compensators in Four-Wire Nonsinusoidal Asymmetrical Systems”. Energies 14(7), 1815, doi: 10.3390/en14071815
  • [32] Stawowy M., et al. (2021) “Method of Estimating Uncertainty as a Way to Evaluate Continuity Quality of Power Supply in Hospital Devices”. Energies 14(2), 486, doi: 10.3390/en14020486
  • [33] Duer S., et al. (2021) “Examination of Multivalent Diagnoses Developed by a Diagnostic Program with an Artificial Neural Network for Devices in the Electric Hybrid Power Supply System “House on Water”. Energies 14, doi: 10.3390/en14082153
  • [34] Duer S., et al. (2022) “Organization and Reliability Testing of a Wind Farm Device in Its Operational Process”. Energies 15, doi: 10.3390/en15176255
  • [35] Duer S., et al. (2022) “Intelligent Systems Supporting the Use of Energy Devices and Other Complex Technical Objects: Modeling, Testing, and Analysis of Their Reliability in the Operating Process”. Energies 15, doi: 10.3390/en15176414
  • [36] Gubarevych O., et al. (2023) “Research and assessment of the reliability of railway transport systems with induction motors”. Energies 16(19), 6888, doi: 10.3390/en16196888
  • [37] Duer S., et al. (2023) “Reliability Testing of Wind Farm Devices Based on the Mean Time to Failures”. Energies 16(6), 2827, doi: 10.3390/en16062827
  • [38] Duer S., et al. (2023) “Assessment of the Reliability of Wind Farm Device on the Basis of Modeling Its Operation Process”. Energies 16(1), 142, doi: 10.3390/en16010142
  • [39] Siergiejczyk M., et al. (2014) “Evaluation of Safety of Highway CCTV System's Maintenance Process”. Telematics - Support For Transport, 471, pp. 69-79
  • [40] Duer S., et al. (2023) “Reliability Testing of Wind Farm Devices Based on the Mean-time Between Failures (MTBF)”. Energies 16(4), 1659, doi: 10.3390/en16041659
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5c318ab6-9a37-44f7-bcf6-2cb8b83fddd0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.