PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Comparison of numerical and experimental analysis of the crack propagation process

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Nowadays numerical methods are a powerful tool to simulate real processes. Polymer materials are increasingly used in engineering solutions. ABS is a common material used interchangeably with respect to traditional materials. Process for the production of components for rese-arch on 3D printers is becoming more widespread and accessible to ordi-nary users. Crack propagation process was carried out at the same time to compare results through experiments performed on the testing machine and numerical study. Cracking process was carried out by finite element method, implemented on the basis of simulations xFEM. This method allows to conduct research related to the separation of the material nodes, in places of highest stress levels that exceed the limits of plasticity and strength of the material. The analysis involved comparison of the shape of the resulting cracks through experimental and numerical way.
Słowa kluczowe
Rocznik
Strony
60--67
Opis fizyczny
Bibliogr. 14 poz., fig., tab.
Twórcy
autor
  • Politechnika Lubelska, Nadbystrzycka 36, 20-618 Lublin
autor
  • Politechnika Lubelska, Nadbystrzycka 36, 20-618 Lublin
Bibliografia
  • [1] Bohatka T. J., Moet A.: Crack layer analysis of fatigue crack propagation in ABS polymer. Journal of Materials Science, vol. 30, 1995, pp. 4669–4675.
  • [2] Hertzberg R. W., Nordberg H.: Fatigue crack propagation in polymeric materials. Journal of Materials Science, vol. 5, 1970, pp. 521–526.
  • [3] Jonak J.: Zagadnienia mechaniki pękania i skrawania materiałów. Lublin: Politechnika Lubelska, 2010, pp. 90–95.
  • [4] Kąkol W., Łodygowski T.: Metoda elementów skończonych w wybranych zagadnieniach mechaniki konstrukcji inżynierskich. Politechnika Poznańska, 2003.
  • [5] Kleiber M.: Wprowadzenie do metody elementów skończonych. Biblioteka Mechaniki Stosowanej IPPT PAN, PWN, Warszawa-Poznań, 1985.
  • [6] Megel M., Kumosa L., Ely T., Armentrout D.: Initiation of stress corrosion cracking in unidirectional glass/polymer composite materials. Composites Science & Technology, vol. 61, 2001, pp. 231–246.
  • [7] Moes N., Belytschko T.: Extended finite element method for cohesive crack growth. Engineering Fracture Mechanics, USA: Northwestern University, 2001.
  • [8] Ramsteiner F., Armbrust T.: Fatigue crack growth in polymers. Polymer Testing, vol. 20, 2001, pp. 321–327.
  • [9] Truss R. W., Chadwick G. A.: The tensile deformation behavior of a transparent ABS polymer. Journal of Materials Science, vol. 11, 1976, pp. 1385–1392.
  • [10] Turnbull A., Maxwell A. S., Pillai S.: Comparative assessment of slow strain rate, 4-pt bend and constant load test methods for measuring environment stress cracking of polymers. Polymer Testing, vol. 19, 2000, pp. 117–129.
  • [11] Venkatesh C.: Getting Started with Abaqus – Workbook 0: User Interface and Modeling Overview, 2011.
  • [12] Venkatesh C.: Getting Started With Abaqus – Workbook 1: Linear Static Analyses and Basic Mesh Generation, 2012.
  • [13] Zienkiewicz O. C., Taylor R. L.: Finite Element Method (5th Edition) vol. 2, Solid Mechanics, 2000, Elsevier.
  • [14] Solid Edge Documentation.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5c2eb69a-9004-48df-8762-77ceec7b434f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.