Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Dinoflagellates account for most of the harmful phytoplankton species but relatively little is known about the specific responses of different species to environmental variables. 21 dino-flagellate species were recorded in the plankton of the Neva Estuary since the mid-19th century. 14- year long data of midsummer dinoflagellate biomass was statistically analyzed in the Neva Estuary to show the changes in dinoflagellate species in relation to environmental factors. Biomasses of Dinophysis norvegica (Clapared & Lachmann 1859), Prorocentrum lima ((Ehrenberg) F.Stein 1878) and Peridinium aciculiferum (Lemmermann 1900) had very similar positive relationships with salinity, temperature, phosphorus and suspended particulate organic matter concentrations while the biomass of the other common species Peridinium cinctum ((Müller) Ehrenberg 1832) and Peridinium sp. mostly showed quite opposite trends. Climate fluctuations leading to changes in the environmental variables could significantly affect the composition and productivity of the dinoflagellate community. Biomass of Glenodinium sp. and Peridinium sp. positively correlated with primary production and biomass and chlorophyll a concentration, but did not show a positive relationship with phosphorus. This may be due to the fact that these species in the conditions of the Neva Estuary, apparently, are more consumers than producers of organic matter, feeding on algae and cyanobacteria of phytoplankton. Therefore, to interpret the relationships between the dinoflagellate biomass and environmental variables one should take into account that the species of this group is characterized by mixotrophy and, consequently, their biomass may depend not only on the conditions of autotrophic, but also heterotrophic nutrition.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
197--207
Opis fizyczny
Bibliogr. 63 poz., rys., tab., wykr.
Twórcy
autor
- Zoological Institute of Russian Academy of Sciences, St. Petersburg, Russia
autor
- Zoological Institute of Russian Academy of Sciences, St. Petersburg, Russia
autor
- Zoological Institute of Russian Academy of Sciences, St. Petersburg, Russia
Bibliografia
- [1] Anderson, D. M., Glibert, P. M., Burkholder, J. M., 2002. Harmful algal blooms and eutrophication: nutrient sources, composition and consequences. Estuaries 25 (4), 704-726, http://dx.doi.org/10.1007/BF02804901.
- [2] Brandt, J. F., 1845. Über mehrere der Nähe von St. Petersburg im Sommer des Jahres 1843 beobachtete Infusorienarten. Bull. de la classe phys.-math. de l'Ac. Imp. des Science de St. Petersburg 3 (2), 26-28.
- [3] Burkholder, J. M., Glibert, P. M., Skelton, H. M., 2008. Mixotrophy, a major mode of nutrition for harmful algal species in eutrophic waters. Harmful Algae 8 (1), 77-93, http://dx.doi.org/10.1016/j.hal.2008.08.010.
- [4] Carpenter, E. J., Janson, S., Boje, R., Pollehne, F., Chang, J., 1995. The dinoflagellate Dinophysis norvegica: biological and ecological observations in the Baltic Sea. Eur. J. Phycol. 30 (1), 1-9, http://dx.doi.org/10.1080/09670269500650751.
- [5] Codd, G. A., Poon, G. K., 1988. Cyanobacterial toxins. In: Rogers, L. J., Gallon, J. G. (Eds.), Biochemistry of the Algae and Cyanobacteria. Clarendon Press, Oxford, 283-296.
- [6] Craveiro, S. C., Daugbjerg, N., Moestrup, Ø., Calado, A. J., 2016. Studies on Peridinium aciculiferum and Peridinium malmogiense (=Scrippsiella hangoei): comparison with Chimonodinium lomnickii and description of Apocalathium gen. nov. (Dinophyceae). Phycologia 56 (1), 21-35, http://dx.doi.org/10.2216/16-20.1.
- [7] Eggleton, T., 2018. Future physical changes. In: Phillips, B. F., Pérez-Ramírez, M. (Eds.), Climate Change Impacts on Fisheries and Aquaculture. A Global Analysis. Volume I. Wiley Blackwell, Chichester, New York, 23-44.
- [8] Faust, M. A., Gulledge, R. A., 2002. Identifying harmful marine dino-flagellates. Contributions from the United States National Herbarium, vol. 42, 1-144.
- [9] Friedland, R., Neumann, T., Schernewski, G., 2012. Climate change and the Baltic Sea action plan: model simulations on the future of the western Baltic Sea. J. Marine Syst. 105-108, 175-186, http://dx.doi.org/10.1016/j.jmarsys.2012.08.002.
- [10] Gagnon, R., 2005. Growth stimulation of Alexandrium tamarense (Dinophyceae) by humic substances from the Manicouagan river (Eastern Canada). J. Phycol. 41 (3), 489-497, http://dx.doi.org/10.1111/j.1529-8817.2005.00077.x.
- [11] Glibert, P. M., Allen, J. I., Bouwman, A. F., Brown, C. W., Flynn, K. J., Lewitus, A. J., Madden, C. J., 2010. Modeling of HABs and eutrophication: Status, advances, challenges. J. Marine Syst. 83 (3-4), 262-275, http://dx.doi.org/10.1016/j.jmarsys.2010.05.004.
- [12] Golubkov, M. S., 2009. Phytoplankton primary production in the Neva Estuary at the turn of the 21st Centaury. Inland Water Biol. 2 (4), 312-318, http://dx.doi.org/10.1134/S199508290904004X.
- [13] Golubkov, M. S., Golubkov, S. M., 2018. The effect of weather conditions on eutrophication in the Neva Estuary. Dokl. Biol. Sci. 480 (1), 110-113, http://dx.doi.org/10.1134/S0012496618030122.
- [14] Golubkov, S., Golubkov, M., Tiunov, A., Nikulina, L., 2017. Long-term changes in primary production and mineralization of organic matter in the Neva Estuary (Baltic Sea). J. Marine Syst. 171, 73-80, http://dx.doi.org/10.1016/j.jmarsys.2016.12.009.
- [15] Grasshoff, K., Ehrhardt, M., Kremling, K., 1999. Methods of Seawater Analysis, 3rd ed. Wiley-VCH, Weinheim, New York, Chichester, Brisbane, Singapore, Toronto, 600 pp.
- [16] Guiry, M. D., Guiry, G. M., 2018. AlgaeBase. World-wide Electronic Publication. Natnl. Univ. Ireland, Galway, http://www.algaebase.org.
- [17] Guo, S., Feng, Y., Wang, L., Dai, M., Liu, Z., Bai, Y., Sun, J., 2014. Seasonal variation in the phytoplankton community of a continental-shelf sea: the East China Sea. Mar. Ecol. Prog. Ser. 516, 103-126, http://dx.doi.org/10.3354/meps10952.
- [18] Hall Jr., R. O., Thomas, S., Gaiser, E. E., 2007. Measuring freshwater primary production and respiration. In: Fahey, T. J., Knapp, A. K. (Eds.), Principles and Standards for Measuring Primary Production. Oxford University Press, Oxford, New York, 175-203.
- [19] Hansen, P. J., 2011. The role of photosynthesis and food uptake for the growth of marine mixotrophic Dinoflagellates. J. Eukaryot. Microbiol. 58 (3), 203-214, http://dx.doi.org/10.1111/j.1550-7408.2011.00537.x.
- [20] Heisler, J., Glibert, P. M., Burkholder, J. M., Anderson, D. M., Cochlan, W., Dennison, W. C., Dortch, Q., Gobler, C. J., Heil, C. A., Humphries, E., Lewitus, A., Magnien, R., Marshall, H. G., Sellner, K., Stockwell, D. A., Stoecker, D. K., Suddleson, M., 2008. Eutrophication and harmful algal blooms: a scientific consensus. Harmful Algae 8, 3-13, http://dx.doi.org/10.1016/j.hal.2008.08.006.
- [21] HELCOM, 1996. Third periodic assessment of the state of the marine environment of the Baltic Sea, 1989-1993. BSEP 64 (B), 1-252.
- [22] HELCOM, 2004. Checklist of Baltic Sea phytoplankton species. BSEP 95, 1-210.
- [23] Hense, I., 2010. Approaches to model the life cycle of harmful algae. J. Marine Syst. 83 (3-4), 108-114, http://dx.doi.org/10.1016/j.jmarsys.2010.02.014.
- [24] Jaanus, A., Hajdu, S., Kaitala, S., Andersson, A., Kaljurand, K., Ledaine, I., Lips, I., Olenina, I., 2006. Distribution patterns of isomorphic cold-water dinoflagellates (Scrippsiella/Woloszynskia complex) causing 'red tides' in the Baltic Sea. Hydrobiologia 554 (1), 137-146, http://dx.doi.org/10.1007/s10750-005-1014-7.
- [25] Jeong, H. J., Seong, K. A., Yoo, Y. D., Kim, T. H., Kang, N. S., Kim, S., Park, J. Y., Kim, J. S., Kim, G. H., Song, J. Y., 2008. Feeding and grazing impact by small marine heterotrophic dinoflagellates on hetertrophic bacteria. J. Eukaryot. Microbiol. 55 (4), 271-288, http://dx.doi.org/10.1111/j.1550-7408.2008.00336.x.
- [26] Jeong, H. J., Yoo, Y. D., Kim, J. S., Seong, K. A., Kang, N. S., Kim, T. H., 2010. Growth, feeding and ecological roles of the mixotrophic and heterotrophic dinoflagellates in marine planktonic food webs. Ocean Sci. J. 45 (2), 65-91, http://dx.doi.org/10.1007/s12601-010-0007-2.
- [27] Kiselev, I. A., 1924. Phytoplankton of the Neva Bay and the eastern part of the Gulf of Finland. Hydrological and hydrobiological studies of the Neva Bay. Studies of the Neva River and its basin. Russian Hydrol. Inst., Leningrad, 55 pp. (in Russian).
- [28] Kiselev, I. A., 1948. About the phytoplankton of the brackish-water part of the Gulf of Finland. In: Zhadin, V. I. (Ed.), In Memory of Academician S. A. Zernov. Academy of Sciences of the USSR, Leningrad, 192-205, (in Russian).
- [29] Kiselev, I. A., 1954. The Determinant of Freshwater Algae of the USSR. Soviet Science, Moscow, 212 pp. (in Russian).
- [30] Klais, R., Tamminen, T., Kremp, A., Spilling, K., Olli, K., 2011. Decadal-scale changes of dinoflagellates and diatoms in the anomalous Baltic Sea spring bloom. PLoS ONE 6 (6), e21567, http://dx.doi.org/10.1371/journal.pone.0021567.
- [31] Kremp, A., Tamminen, T., Spilling, K., 2008. Dinoflagellate bloom formation in natural assemblages with diatoms: nutrient competition and growth strategies in Baltic spring phytoplankton. Aquat. Microb. Ecol. 50 (2), 181-196, http://dx.doi.org/ 10.3354/ame01163.
- [32] Kuosa, H., Fleming-Lehtinen, V., Lehtinen, S., Lehtiniemi, M., Nygård, H., Raateoja, M., Raitaniemi, J., Tuimala, J., Uusitalo, L., Suikkanen, S., 2017. A retrospective view of the development of the Gulf of Bothnia ecosystem. J. Marine Syst. 167, 78-92, http://dx.doi.org/10.1016/j.jmarsys.2016.11.020.
- [33] Lange, E. K., 2006. Analysis of structural indicators of the midsummer phytoplankton of the Neva Bay for a 90-year period. In: Lavrent'eva, G. M., Susloparova, O. N. (Eds.), Ecological Aspects of the Impact of Hydro Construction on the Biota of the Eastern Part of the Gulf of Finland, FGNU GosNIORH, St. Petersburg, 122-146, (in Russian).
- [34] Lassus, P., Chomérat, N., Hess, P., Nézan, E., 2016. Toxic and harmful microalgae of the World Ocean. Micro-algues toxiques et nuisibles de l'Océan Mondial. In: International Society for the Study of Harmful Algae/Intergovernmental Oceanographic Commission of UNESCO. Copenhagen, 523 pp.
- [35] Meier, H. E. M., Hordoir, R., Andersson, H. C., Dieterich, C., Eilola, K., Gustafsson, B. G., Höglund, A., Schimanke, S., 2012. Modeling the combined impact of changing climate and changing nutrient loads on the Baltic Sea environment in an ensemble of transient simulations for 1961-2099. Clim. Dynam. 39 (9-10), 2421-2441, http://dx.doi.org/10.1007/s00382-012-1339-7.
- [36] Nikulina, V. N., 1987. Dynamics of numbers and biomass of phytoplankton. In: Vinberg, G. G., Gutelmakher, B. L. (Eds.), Neva Bay: Hydrobiological Investigations. Nauka, Leningrad. 20-29, (in Russian).
- [37] Nikulina, V. N., 2003. Seasonal dynamics of phytoplankton in the shallow zone of the eastern part of the Gulf of Finland in the 1980s and 1990s. Oceanologia 45 (1), 25-39.
- [38] Nikulina, V. N., Gubelit, Y. I., 2011. Cyanobacteria and macroalgae in ecosystem of the Neva estuary. Knowl. Manag. Aquat. Ecosyst. 402 (06), 12 pp., http://dx.doi.org/10.1051/kmae/2011049.
- [39] Oksanen, J., Blanchet, F. G., Friendly, M., Kindt, R., Legendre, P., McGlinn, D., Minchin, P. R., O'Hara, R. B., Simpson, G. L., Solymos, P., Stevens, M. H. H., Szoecs, E., Wagner, H., 2017. Vegan: Community Ecology Package (Version 2.4-5) [Software], Retrieved from: https://CRAN.R-project.org/package=vegan.
- [40] Olenina, I., Hajdu, S., Edler, L., Andersson, A., Wasmund, N., Busch, S., Göbel, J., Gromisz, S., Huseby, S., Huttunen, M., Jaanus, A., Kokkonen, P., Ledaine, I., Niemkiewicz, E., 2006. Biovolumes and size-classes of phytoplankton in the Baltic Sea. BSEP 106, 1-144.
- [41] Olli, K., Trunov, K., 2010. Abundance and distribution of vernal bloom dinoflagellate cysts in the Gulf of Finland and Gulf of Riga (the Baltic Sea). Deep-Sea Res. Pt. II 57 (3-4), 235-242, http://dx.doi.org/10.1016/j.dsr2.2009.09.009.
- [42] Pankov, H., 1976. Algenflora der Ostsee 1. Plankton, Fischer-Verlag, Stuttgart, 493 pp.
- [43] Price, A. M., Coffin, M. R. S., Pospelova, V., Latimer, J. S., Chmura, G. L., 2017. Effect of nutrient pollution on dinoflagellate cyst assemblages across estuaries of the NW Atlantic. Mar. Pollut. Bull. 121 (1-2), 339-351, http://dx.doi.org/10.1016/j.marpol-bul.2017.06.024.
- [44] R Development Core Team, 2017. The R Project for Statistical Computing (Version 3.4.0) [Software], Retrieved from: http://www.r-project.org.
- [45] Riisgaard, K., Hansen, P. J., 2009. Role of food uptake for photosynthesis, growth and survival of mixotrophic dinoflagellate Dinophysis acuminata. Mar. Ecol. Prog. Ser. 381, 51-62.
- [46] Sandberg, J., Andersson, A., Johansson, S., Wikner, J., 2004. Pelagic food web structure and carbon budget in the northern Baltic Sea: potential importance of terrigenous carbon. Mar. Ecol. Prog. Ser. 268, 13-29.
- [47] Shishkin, B. A., Nikulina, V. N., Maksimov, A. A., Silina, N. I., 1989. The main characteristics of the biota of the upper part of the Gulf of Finland and its role in the formation of water quality. Investigations of the Neva River, the Neva Bay and the eastern part of the Gulf of Finland. Gidrometeoizdat, Leningrad, 96 pp. (in Russian).
- [48] Sivonen, K., Kononen, K., Esaca, A. L., Niiemela, S. I., 1989. Toxicity and isolation of the cyanobacterium Nodularia spumigena from the southern Baltic Sea in 1986. Hydrobiologia 185, 3-8.
- [49] Skarlato, S., Filatova, N., Knyazev, N., Berdieva, M., Telesh, I., 2018. Salinity stress response of the invasive dinoflagellate Prorocentrum minimum. Estuar. Coast. Shelf Sci. 211, 199-207, http://dx.doi.org/10.1016/j.ecss.2017.07.007.
- [50] Smayda, T. T., 2002. Adaptive ecology, growth strategies and the global bloom expansion of dinoflagellates. J. Oceanogr. 58 (2), 281-294.
- [51] Smayda, T. T., Reynolds, C. S., 2003. Strategies of marine dinoflagellate survival and some rules of assembly. J. Sea Res. 49, 95-106, http://dx.doi.org/10.1016/S1385-1101(02)00219-8.
- [52] Smayda, T. J., Trainer, V. L., 2010. Dinoflagellate blooms in upwelling systems: Seeding, variability, and contrasts with diatom bloom behaviour. Prog. Oceanogr. 85 (1-2), 92-107, http://dx.doi.org/10.1016/j.pocean.2010.02.006.
- [53] Telesh, I. V., Schubert, H., Skarlato, S. O., 2016. Ecological niche partitioning of the invasive dinoflagellate Prorocentrum minimum and its native congeners in the Baltic Sea. Harmful Algae 59, 100-111, http://dx.doi.org/10.1016/j.hal.2016.09.006.
- [54] Tereshenkova, T. V., 2006. Comparative characteristics of the mid-summer phytoplankton of the Gulf of Vyborg, the Luga and Koporsk Bay, the Bierkesund Strait and the eastern part of the Gulf of Finland. In: Lavrent'eva, G. M., Susloparova, O. N. (Eds.), Ecological Aspects of the Impact of Hydro Construction on the Biota of the Eastern Part of the Gulf of Finland, FGNU GosNIORH, St. Petersburg, 37-86, (in Russian).
- [55] Tikkanen, T., 1986. Kasviplannktonpas. Suomen Luonnosujelun Tuki Oy, Helsinki. 278 pp.
- [56] Vernet, M., Smith, R. C., 2007. Measuring and modeling primary production in marine pelagic ecosystems. In: Fahey, T. J., Knapp, A. K. (Eds.), Principles and Standards for Measuring Primary Production. Oxford University Press, Oxford, New York, 142-174.
- [57] Vislouh, S. M., 1913. A Brief Report on Biological Investigations of the Neva Bay in 1911-1913, St. Petersburg, 98 pp. (in Russian).
- [58] Vislouh, S. M., 1921. To the knowledge of the microorganisms of the Neva Bay. Proc. Russian Hydrol. Inst. 13, 83-96, (in Russian).
- [59] Wasmund, N., Uhlig, S., 2003. Phytoplankton trends in the Baltic Sea. ICES J. Mar. Sci. 60 (2), 177-186, http://dx.doi.org/10.1016/S1054-3139(02)00280-1.
- [60] Wasmund, N., Tuimala, J., Suikkanen, S., Vandepitte, L., Kraberg, A., 2011. Long-term trends in phytoplankton composition in the western and central Baltic Sea. J. Marine Syst. 87 (2), 145-159, http://dx.doi.org/10.1016/j.jmarsys.2011.03.010.
- [61] Xiao, W., Liu, X., Irwin, A. J., Laws, E. A., Wang, L., Chen, B., Zeng, Y., Huang, B., 2018. Warming and eutrophication combine to restructure diatoms and dinoflagellates. Water Res. 128, 206-218, http://dx.doi.org/10.1016/j.watres.2017.10.051.
- [62] Zhou, Z. X., Yu, R. C., Zhou, M. J., 2017. Seasonal succession of microalgal blooms from diatoms to dinoflagellates in the East China Sea: A numerical simulation study. Ecol. Model. 360, 150-162, http://dx.doi.org/10.1016/j.ecolmodel.2017.06.027.
- [63] Zonneveld, K. A. F., Marret, F., Versteegh, G. J. M., Bogus, K., Bonnet, S., Bouimetarhan, I., Crouch, E., de Vernal, A., Elshanawany, R., Edwards, L., Esper, O., Forke, S., Grøsfjeld, K., Henry, M., Holzwarth, U., Kielt, J.-F., Kim, S.-Y., Ladouceur, S., Ledu, D., Chen, L., Limoges, A., Londeix, L., Lu, S.-H., Mahmoud, M. S., Marino, G., Matsouka, K., Matthiessen, J., Mildenhal, D. C., Mudie, P., Neil, H. L., Pospelova, V., Qi, Y., Radi, T., Richerol, T., Rochon, A., Sangiorgi, F., Solignac, S., Turon, J.-L., Verleye, T., Wang, Y., Wang, Z., Young, M., 2013. Atlas of modern dinoflagellate cyst distribution based on 2405 data points. Rev. Palaeobotany Palyno 191, 1-197, http://dx.doi.org/10.1016/j.revpalbo.2012.08.003.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5c2dd5e4-f5b9-4e27-87d0-1ef4d33409b7