PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Modelling of limestone calcination for optimisation of prallel flow regenerative shaft kiln (PFR), case study: Iran Alumina Plant

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
To produce the lime required for the Bayer process, two parallel flow regenerative shaft kilns (PFR) were used in the Iran Alumina plant located in Jajarm, North Khorasan Province, Iran. In this study, the calcination conditions of limestone were modelled in a laboratory furnace by considering three factors of limestone size, temperature and calcination time using the Box-Behnken method. The calcination model of limestone was obtained using a quadratic equation. Due to the importance of limestone dust in the performance of industrial kilns, conditions of calcification and its reactivity with water were examined at three temperature ranges of 800, 1000, and 1200°C, by two methods of titration and standard ASTM C110. The results indicated a decrease in reactivity of lime relative to the increased temperature of calcination and the lack of forming the burnt lime particles that stick together (blocking). Finally, the ratio of input limestone (kg) to fuel (m3) was reduced from 16.4 to 15.3 to increase the average temperature of the burning zone to 1000°C. Also, excess air was reduced from 40 to 20%. In this condition, the lime quality was increased by about 6% in the kilns.
Rocznik
Strony
209--222
Opis fizyczny
Bibliogr. 19 poz., rys., tab., wykr.
Twórcy
  • School of Mining Engineering, College of Engineering, University of Tehran, Tehran, Iran
  • School of Mining Engineering, College of Engineering, University of Tehran, Tehran, Iran
  • School of Mining Engineering, College of Engineering, University of Tehran, Tehran, Iran
Bibliografia
  • [1] R. Sonthalia, P. Behara, T. Kumaresan, T. Thakre, Review on alumina trihydrate precipitation mechanisms and effect of Bayer impurities on hydrate particle growth rate. Int. J. Miner. Process. 125, 137-148 (2013). DOI: https://doi.org/10.1016/j.minpro.2013.08.002.
  • [2] G. Liu, W. Dong, T. Qi, Q. Zhou, Z. Peng, X. Li, Behavior of calcium oxalate in sodium aluminate solutions. Trans. Nonferrous Met. Soc. China 27 (8), 1878-1887 (2017). DOI: https://doi.org/10.1016/S1003-6326(17)60212-7.
  • [3] L. Jun, C.A. Prestidge, J. Addai-Mensah, Secondary nucleation of gibbsite crystals from synthetic Bayer liquors effect of alkali metal ions. J. Cryst. Growth 219 (4), 451-464 (2000). DOI: https://doi.org/10.1016/S0022-0248(00)00734-X.
  • [4] B.I. Whittington, The chemistry of CaO and Ca(OH)2 relating to the Bayer process. Hydrometallurgy 43 (1-3), 13-35 (1996). DOI: https://doi.org/10.1016/0304-386X(96)00009-6.
  • [5] R. Lumley, Fundamentals of aluminum metallurgy: Production, processing and applications. Woodhead Publishing Limited, Abington Hall, Granta Park, Great Abington, Cambridge CB21 6AH, UK (2011).
  • [6] J.H. Potgieter, S.S. Potgieter, S.J. Moja, A. Mulaba-Bafubiandi, An empirical study of factors influencing lime slaking. Part I: Production and storage conditions. Miner. Eng. 15 (3), 201-203 (2002). DOI: https://doi.org/10.1016/S0892-6875(02)00008-0.
  • [7] J.M. Valverde, P.E. Sanchez-Jimenez, L.A. Perez-Maqueda, Limestone Calcination Nearby Equilibrium: Kinetics, CaO Crystal Structure, Sintering and Reactivity. J. Phys. Chem. C 119 (4), 1623-1641 (2015). DOI: https://doi.org/10.1021/jp508745u.
  • [8] P. Maina, Improvement of Lime Reactivity towards Desulfurization by Hydration Agents. Chem. Sci. Trans. 2 (1), 147-159 (2013).doi: 10.7598/cst2013.233.
  • [9] H. Piringer, Lime Shaft Kilns. Energy Procedia 120, 75-95 (2017). DOI: https://doi.org/10.1016/j.egypro.2017.07.156.
  • [10] M. Mahmoudian, A. Ghaemi, Sh. Shahhosseini, Removal of carbonate and oxalate pollutants in Bayer process using thermal and chemical techniques. Hydrometallurgy 154, 137-148 (2015). DOI: https://doi.org/10.1016/j.hydromet.2015.03.016.
  • [11] A. Senegacnik, J. Oman, B. Sirok, Annular shaft kiln for lime burning with kiln gas recirculation. Appl. Therm. Eng. 28 (7), 785-792 (2008). DOI: https://doi.org/10.1016/j.applthermaleng.2007.04.015.
  • [12] J. Valek, E. vanHalem, A. Viani, M. Perez-Estebanez, R. Sevcík, P. Sasek, Determination of optimal burning temperature ranges for production of natural hydraulic limes. Constr. Build. Mater. 66, 771-780 (2014). DOI: https://doi.org/10.1016/j.conbuildmat.2014.06.015.
  • [13] D. Sheng-xiang, X. Qing-song, Z. Jie-min, A lime shaft kiln diagnostic expert system based on holographic monitoring and real-time simulation. Expert Syst. Appl. 38 (12), 15400-15408 (2011). DOI: https://doi.org/10.1016/j.eswa.2011.06.021.
  • [14] A. Sagastume Gutierrez, J.B. Cogollos Martinez, C. Vandecasteele, Energy and exergy assessments of a lime shaft kiln. Appl. Therm. Eng. 51 (1-2), 273-280 (2013). DOI: https://doi.org/10.1016/j.applthermaleng.2012.07.013.
  • [15] B. Krause, B. Liedmann, J. Wiese, S. Wirtz, V. Scherer, Coupled three dimensional DEM-CFD simulation of a lime shaft kiln - Calcination, particle movement and gas phase flow field. Chem. Eng. Sci. 134, 834-849 (2015). DOI: https://doi.org/10.1016/j.ces.2015.06.002.
  • [16] B. Krause, B. Liedmann, J. Wiese, P. Bucher, S. Wirtz, 3D-DEM-CFD simulation of heat and mass transfer, gas combustion and calcination in an intermittent operating lime shaft kiln. Int. J. Therm. Sci. 117, 121-135 (2017). DOI: https://doi.org/10.1016/j.ijthermalsci.2017.03.017.
  • [17] E. Ontiveros-Ortega, E.M. Ruiz-Agudo, A. Ontiveros-Ortega, Thermal decomposition of the CaO in traditional lime kilns. Applications in cultural heritage conservation. Constr. Build. Mater. 190, 349-362 (2018). DOI: https://doi.org/10.1016/j.conbuildmat.2018.09.059.
  • [18] H. Hao, Y. Zhang, S. Hao, C. Zhang, W. Jiang, P. Cui, Preparation and Metallurgical Analysis of High Activity Burnt Lime for Steelmaking. J. Iron Steel Res. Int. 23 (9), 884-890 (2016).doi: 10.1016/S1006-706X(16)30135-2.
  • [19] V.O. Golubev, V.E. Nikol’skii, B.S. Abezgauz, E.A. Shklyarskii Zagrivnyi, I.N. Belogazov, Monitoring and selection of optimum production parameters for metallurgical-grade lime to be used in ferrous metallurgy. Metallurgist 52 (9), 552-560 (2008). DOI: https://doi.org/10.1007/s11015-009-9092-9.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5c2add6f-a0c7-4c0d-96f1-1780da73ff29
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.