Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Road roughness is considered a primary indicator of pavement condition and serviceability, and the performance of paved roads is linked to road roughness. The focu of this study is to develop a relationship between two important roughness indicators, namely the international roughness index (IRI) and slope variance (SV), based on actual road roughness data to achieve a suitable correlation between these two indices using artificial neural networks (ANNa) and gene expression programming (GEP) techniques. Different study areas were selected to develop the prediction model. The first study area is the Desert Highway in Jordan, while the three remaining study areas are located in the US. A total of 533 data sets were used in this study to develop a model to predict the IRI from the SV. The GeneXproTools 5 software package was used to build the GEP model, while MATLAB 2019 was employed to develop the ANN model. The results showed that the GEP and ANN models outperformed all other previous models. The GEP-Based model showed a better performance and more precise results than the ANN model according to the coefficient of determination (R2).
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
93--106
Opis fizyczny
Bibliogr. 27 poz.
Twórcy
autor
- The University of Jordan, Department of Civil Engineering, School of Engineering; Amman 11942, Jordan
autor
- The University of Jordan, Department of Civil Engineering, School of Engineering; Amman 11942, Jordan
autor
- The University of Jordan, Department of Civil Engineering, School of Engineering; Amman 11942, Jordan
autor
- Jordan University of Science and Technology (JUST); Irbid 22110, Jordan
Bibliografia
- 1. Msallam, M. & Al Rawi, O.S. & Abudayyeh, D. & Assi, I. Development of a pavement management system to be used in highway pavement evaluation inJordan. Development. 2014. Vol. 6. No. 9. P. 330-342.
- 2. Highway Research Board, The AASHO Road Test, Report 5, Pavement Research. Special Report 61E, Publication No. 954. National Academy of Sciences – National Research Council, Washington, D.C. 1962.
- 3. Wei, L. & Fwa, T.F. Characterizing road roughness by wavelet transform. Transportation Research Record. 2004. Vol. 1896. No. 1. P. 152-158.
- 4. Chang, J.R. & Su, Y.S. & Huang, T.C. & Kang, S.C. & Hsieh, S.H. Measurement of the international roughness index (IRI) using an autonomous robot (P3-AT). In: 26thInternational Symposium on Automation and Robotics in Construction. 2009. Vol. 130. No. 1. P. 325-331.
- 5. Imam, R. & Murad, Y. & Asi, I. & Shatnawi, A. Predicting Pavement Condition Index from International Roughness Index using Gene Expression Programming. Innovative Infrastructure Solutions. 2021. Vol. 6. No. 3. DOI: 10.1007/s41062-021-00504-1.
- 6. Carey Jr, W.N. & Huckins, H.C. & Leathers, R.C. Slope Variance as a Measure of Roughness and the CHLOE Profilometer. HRB Spec. 1962. Vol. 73. No. 1. P. 126-137.
- 7. Yunusov, A. & Riskaliev, D. & Abdukarimov, N. &Eshkabilov, S. Signal processing and conditioning tools and methods for road profile assessment. In: Design, Simulation, Manufacturing: The Innovation Exchange. 2019. P. 742-751.
- 8. Islam, S. & Buttlar, W.G. & Aldunate, R.G. & Vavrik, W.R. Measurement of pavement roughness using android-based smartphone application. Transportation Research Record. 2014. Vol. 2457. No. 1. P. 30-38.
- 9. Arhin, S.A. & Williams, L.N. & Ribbiso, A. & Anderson, M.F. Predicting pavement condition index using international roughness index in a dense urban area. Journal of Civil Engineering Research. 2015. Vol. 5. No. 1. P. 10-17.
- 10. Azim, I. & Yang, J. & Javed, M.F. & Iqbal, M.F. & Mahmood, Z. & Wang, F. & Liu, Q.F. Prediction model for compressive arch action capacity of RC frame structures under column removal scenario using gene expression programming. Structures. 2020. Vol. 25. No. 1. P.212-228.
- 11. Murad, Y. & Imam, R. & Hajar, H.A. & Hammad, A. &Shawash, Z. (2019). Predictive compressive strength models for green concrete. International Journal of Structural Integrity. 2019. Vol. 11. No. 2. P. 169-184. DOI: 10.1108/IJSI-05-2019-0044.
- 12. Choi, J. & Adams, T.M. & Bahia, H.U. Pavement Roughness Modelling Using Back-Propagation Neural Networks. Computer-Aided Civil and Infrastructure Engineering. 2004. Vol. 19. No. 4. P. 295-303.
- 13. Vidya, R. & Santhakumar, S.M. & Mathew, S. Estimation of IRI from PCI in construction work zones. International Journal on Civil and Environmental Engineering. 2013. Vol. 2. No. 1. P. 1-5.
- 14. Hossain, MI. & Gopisetti, L.S.P. & Miah, M.S. International Roughness Index Prediction of Flexible Pavements Using Neural Networks. Journal of Transportation Engineering, Part B: Pavements. 2019. Vol. 145. No. 1. P. 1-10.
- 15. Mazari, M. & Rodriguez, D.D. Prediction of Pavement Roughness using a Hybrid Gene Expression Programming-Neural Network Technique. Journal of Traffic and Transportation Engineering. 2016. Vol. 3. No. 5. P. 448-455.
- 16. Bayrak, M.B. & Teomete, E. & Agarwal, M. Use of Artificial Neural Networks for Predicting Rigid Pavement Roughness. In: Midwest Transportation Consortium Fall Student Conference. Ames, Iowa, USA. 2004.
- 17. Dujisin, D. & Arroyo, A. Developing a relationship between present serviceability index –International Roughness Index. Chilean Chamber of Construction. Santiago, Chile.1995.
- 18. Hall, K. & Muñoz, C. Estimation of present serviceability index from international roughness index. Transportation Research Record. 1999. Vol. 1655. No. 1. P. 93-99.
- 19. Shahnazari, H. & Tutunchian, M.A. & Mashayekhi, M. & Amini, A.A. Application of Soft Computing for Prediction of Pavement Condition Index. Journal of Transportation Engineering. 2012. Vol. 138. No. 12. P.1495-1506.
- 20. Sayers, M. & Gillespie, T.D. & Paterson, W.D.O. Guidelines for the Conduct and Calibration of Road Roughness Measurements. Technical Report No. 46. Washington, D.C. 1986.
- 21. Koza, J.R. Genetic programming as a means for programming computers by natural selection. Statistics and computing. 1994. Vol. 4. No. 2. P. 87-112.
- 22. Abambres, M. & Ferreira, A. Application of ANN in Pavement Engineering: State-of-Art. 2017.
- 23. Bendana, R. & Del Cano, A. & De la Cruz, M.P. Contractor selection: Fuzzy-control approach. Canadian Journal of Civil Engineering. 2008. Vol. 35. No. 5. P. 473-486.
- 24. Flood, I. & Kartam, N. Neural networks in civil engineering: Principles and understanding. Journal of Computing in Civil Engineering. 1994. Vol. 8. No. 2. P. 131-148.
- 25. Eaton, J. W. Octave: Past, present and future. In: Proceedings of the 2ndInternational Workshop on Distributed Statistical Computing. 2001. Vienna, Austria.
- 26. Rowland, J.R. & Holmes, W.M. Simulation validation with sparse random data. Computers & Electrical Engineering. 1978. Vol. 5. No. 1. P. 37-49.
- 27. Toledo, T. & Koutsopoulos, H.N. Statistical validation of traffic simulation models. Transportation Research Record. 2004. Vol. 1876. No. 1. P.142-150.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5c26b36e-0b72-4fe5-b618-04e8a16fe744