PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Spherical Elementary Current Systems Method Applied to Geomagnetic Field Modeling for the Adriatic

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of this work was to derive an accurate regional model of geomagnetic components on the Adriatic. Data of north, east and vertical geomagnetic components at repeat stations and ground survey sites enclosing the Adriatic Sea were used to obtain a geomagnetic model at 2010.5 epoch. The core field was estimated by use of the global Enhanced Magnetic Model, while the crustal field by a mathematical technique for expanding vector systems on a sphere into basis functions, known as spherical elementary current systems method. The results of this method were presented and compared to the crustal field estimations by the Enhanced Magnetic Model. The maps of isolines of the regional model are also presented.
Czasopismo
Rocznik
Strony
930--942
Opis fizyczny
Bibliogr. 20 poz.
Twórcy
autor
  • External Associate of Faculty of Geodesy, University of Zagreb, Croatia
autor
  • Faculty of Geodesy, University of Zagreb, Croatia
Bibliografia
  • Amm, O. (1997), Ionospheric elementary current systems in spherical coordinates and their application, J. Geomag. Geoelectr. 49, 7, 947-955, DOI: 10.5636/ jgg.49.947.
  • Amm, O., and A. Viljanen (1999), Ionospheric disturbance magnetic field continuation from the ground to the ionosphere using spherical elementary current systems, Earth Planets Space 51, 6, 431-440, DOI: 10.1186/BF03352247.
  • Brkić, M., D. Šugar, M. Pavasović, E. Vujić, and E. Jungwirth (2012), Croatian geomagnetic field maps for 2008.5 epoch, Ann. Geophys. 55, 6, 1061-1069, DOI: 10.4401/ag-5395.
  • Brkić, M., E. Vujić, D. Šugar, E. Jungwirth, D. Markovinović, M. Rezo, M. Pavasović, O. Bjelotomić, M. Šljivarić, M. Varga, and V. Poslončec-Petrić (2013), Basic geomagnetic network of the Republic of Croatia 2004-2012, with geomagnetic field maps at 2009.5 epoch, Croatian State Geodetic Administration (in Croatian).
  • De Santis, A. (1991), Translated origin spherical cap harmonic analysis, Geophys. J. Int. 106, 1, 253-263, DOI: 10.1111/j.1365-246X.1991.tb04615.x.
  • De Santis, A. (1992), Conventional spherical harmonic analysis for regional modelling of the geomagnetic field, Geophys. Res. Lett. 19, 10, 1065-1067, DOI: 10.1029/92GL01068.
  • De Santis, A., O. Battelli, and D.J. Kerridge (1990), Spherical cap harmonic analysis applied to regional field modelling for Italy, J. Geomag. Geoelectr. 42, 9, 1019-1036, DOI: 10.5636/jgg.42.1019.
  • Dominici, G., A. Meloni, M. Sperti, G. Manzo, and R. Maseroli (2012), Italian Magnetic Network and Geomagnetic Field Maps of Italy at year 2010.0, Istituto Geografico Militare, Italy.
  • Haines, G.V. (1985), Spherical cap harmonic analysis, J. Geophys. Res. 90, B3, 2583-2591, DOI: 10.1029/JB090iB03p02583.
  • Juusola, L., O. Amm, and A. Viljanen (2006), One-dimensional spherical elementary current systems and their use for determining ionospheric currents from satellite measurements, Earth Planets Space 58, 5, 667-678, DOI: 10.1186/BF03351964.
  • Korte, M., and E. Thébault (2007), Geomagnetic repeat station crustal biases and vectorial anomaly maps for Germany, Geophys. J. Int. 170, 1, 81-92, DOI: 10.1111/j.1365-246X.2007.03387.x.
  • Maus, S. (2010), An ellipsoidal harmonic representation of Earth’s lithospheric magnetic field to degree and order 720, Geochem. Geophys. Geosyst. 11, 6, Q06015, DOI: 10.1029/2010GC003026.
  • McLay, S.A., and C.D. Beggan (2010), Interpolation of externally-caused magnetic fields over large sparse arrays using Spherical Elementary Current Systems, Ann. Geophys. 28, 9, 1795-1805, DOI: 10.5194/angeo-28-1795-2010.
  • Press, W.H., S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery (2001), Numerical Recipes in Fortran 77: The Art of Scientific Computing, Cambridge University Press, Cambridge.
  • Pulkkinen, A., O. Amm, A. Viljanen, and BEAR Working Group (2003), Separation of the geomagnetic variation field on the ground into external and internal parts using the spherical elementary current system method, Earth Planets Space 55, 3, 117-129, DOI: 10.1186/ BF03351739.
  • Thébault, E., J.J. Schott, M. Mandea, and J.P. Hoffbeck (2004), A new proposal for spherical cap harmonic modelling, Geophys. J. Int. 159, 1, 83-103, DOI: 10.1111/j.1365-246X.2004.02361.x.
  • Thébault, E., M. Mandea, and J.J. Schott (2006), Modeling the lithospheric magnetic field over France by means of revised spherical cap harmonic analysis (R SCHA), J. Geophys. Res. 111, B5, 949-967, DOI: 10.1029/ 2005JB004110.
  • Thébault, E., M. Purucker, K.A. Whale, B. Langlais, and T.J. Sabaka (2010), The magnetic field of the Earth’s lithosphere, Space Sci. Rev. 155, 1, 95-127, DOI: 10.1007/s11214-010-9667-6.
  • Vanhamäki, H., O. Amm, and A. Viljanen (2003), One-dimensional upward continuation of the ground magnetic field disturbance using spherical elementary current systems, Earth Planets Space 55, 10, 613-625, DOI: 10.1186/ BF03352468.
  • Weygand, J.M., O. Amm, A. Viljanen, V. Angelopoulos, D. Murr, M.J. Engebretson, H. Gleisner, and I. Mann (2011), Application and validation of the spherical elementary currents systems technique for deriving ionospheric equivalent currents with the North American and Greenland ground magnetometer arrays, J. Geophys. Res. 116, A03305, DOI: 10.1029/ 2010JA016177.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5c20dc53-7248-42e8-a8eb-1c4d8b8074ce
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.