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Abstract. In the paper the burned and healthy layers of skin tissue are considered. The 

temperature distribution in these layers is described by the system of two  Pennes equations. 

The governing equations are supplemented by the boundary conditions. On the external 

surface the Robin condition is known. On the surface between burned and healthy skin 

the ideal contact is considered, while on the internal surface limiting the system the body 

temperature is taken into account. The problem is solved by means of the boundary element 

method. 

 

Keywords: bioheat transfer, Pennes equation, boundary element method 

Introduction 

The boundary element method constitutes a very effective tool for numerical 

simulation of bioheat transfer processes. First of all, it assures the exact approxima-

tion of real shapes of the boundaries and also a very good exactness of boundary 

conditions approximation [1, 2]. These features of the BEM are very essential 

in the case of temperature determination in the burned and healthy tissue because 

small differences in temperature in these sub-domains require very accurate meth-

ods for predicting the temperature. In this paper two variants of the BEM are taken 

into account. For burned tissue, the classical boundary element algorithm for the 

Laplace equation is used, while for healthy tissue, the BEM algorithm for tempera-

ture-dependent source function is applied. These algorithms are coupled by the 

boundary condition on the contact surface between sub-domains. In numerical 

realization the linear boundary elements and the linear internal cells for burned 

tissue sub-domain are used. It should be pointed out that the burned sub-domain 

does not require the interior discretization. In the final part, the example of compu-

tations is presented and the conclusions are formulated. 
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1. Governing equations 

The burned and healthy sub-domains, as shown in Figure 1, are considered. 

 

 
Fig. 1. Domain considered 

The Laplace equation describes the steady temperature field in burned tissue 

 2

1 1 1
: λ ( ) 0x T x∈Ω ∇ =  (1) 

where x = (x1, x2) are the spatial coordinates, λ1 is the thermal conductivity of  

burned tissue, T1(x) denotes the temperature. 

The temperature field in healthy tissue is described  by the Pennes equation [3] 
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where λ2 is the tissue thermal conductivity, T2(x) is the tissue temperature, GB is 

the blood perfusion rate, cB is the specific heat of blood, TB is the arterial blood 

temperature, Qmet is the metabolic heat source. 

On the external surface (cf. Fig. 1) the Robin condition is assumed 
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where Ta is the ambient temperature, α  is the heat transfer coefficient, ∂Te/∂n 

denotes the normal derivative (e = 1,2) and n = [cosα1, cosα2] is the normal outward 

vector. 

On the surface between sub-domains the continuity of heat flux and temperature 

field is taken into account 
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On the internal surface Γin  the Dirichlet condition is known 
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On the remaining boundaries the no-flux condition is accepted. 

2. Boundary element method 

The problem has been solved by means of the boundary element method [1, 2]. 

The boundary integral equation corresponding to the equation (1) is the following 
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* *
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(ξ) (ξ) (ξ) (ξ, )d = (ξ) (ξ, )dB T q T x T q x

Γ Γ

+ Γ Γ∫ ∫  (6) 

where ΓΙ = Γex_1 ∪ Γc , ξ is the observation point, the coefficient B(ξ) is dependent 

on the location of source point ξ, ( ) ( )1 1 1
λ /q x T x n= − ∂ ∂  is the heat flux. 

For the problem considered the fundamental solution T1

*
(ξ, x)  is the following 
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where r is the distance between the points ξ and x. 

The heat flux resulting from the fundamental solution is defined as 
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where 
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The integral equation corresponding to the equation (2) is the following 
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where ΓΙΙ = Γc ∪Γ ex_2∪Γ3 ∪Γ in∪  Γ4∪ Γ ex_5 (cf. Fig. 1), and 
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The fundamental solution and heat flux resulting from the fundamental solution 

in the case discussed have a form 
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where K0 (
.

), K1 (
.

) are the modified Bessel functions of second kind, the zero order 

and the first order, respectively [1, 2]. 

3. Numerical realization 

To solve the equations (6) and (10) the boundary Γ is divided into N elements 

Γj, j = 1,2,..., N and the interior Ω2 is divided into L internal cells as shown 

in Figure 2. Next, the integrals in the equations (6) and (10) are replaced by 

the sums of integrals over these elements, this means 
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where N1 is the number of elements on the boundary limiting domain Ω1. In the 

paper the linear boundary elements are applied. Finally one obtains the following 

systems of algebraic equations: 

• for the burned region 
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• for the healthy tissue domain 
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where K1, K−K1 are the number of boundary nodes located at the boundary limiting 

sub-domains Ω1 and Ω2, respectively. 
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The system of equations (15) and (16) can be written in the matrix convention 

 
1 1 1 1
=G q H T  (17) 

and 

 
2 2 2 2
= +G q H T P  (18) 

Details of the calculation of matrix elements appearing in equations (17) and (18) 

are described in [3]. 

 

 

Fig. 2. Discretization of boundaries and interior Ω2 

The equations (17) and (18) can be written in the following form 

• for the burned region 
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• for the healthy tissue domain 
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where: 

• _1 _1

1 1
,  

ex ex

T q  are the vectors of functions T and q at the boundary Γex_1 of domain 

Ω1, 

• 
1 2 1 2
, , ,

c c c c
T T q q  are the vectors of functions T and q on the contact surface Γc 

between sub-domains Ω1 and Ω2, 
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• _ 2 3 4 _5 _ 2 3 4 _5

2 2 2 2 2 2 2 2 2 2
, , , , , , , , ,

ex in ex ex in ex
T T T T T q q q q q are the vectors of functions T and q 

at the boundary Γ ex_2∪Γ3 ∪Γ in∪  Γ4∪ Γ ex_5 of domain Ω2. 

The condition (4) written in the form 
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should be introduced to  equations (19), (20). 

Next, coupling these systems of equations and taking into account the remaining 

boundary conditions, one has 
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Finally, the system of equations (22) can be written in the form 

 =AX B  (23) 

where A is the main matrix, X is the unknown vector and B is the free terms vector. 

The system of equations (23) enables the determination of the missing boundary 

values. Knowledge of nodal boundary temperatures and heat fluxes allows to 

calculate the internal temperatures at the optional points selected from the burned 

and healthy tissue sub-domains [1, 2]. 

4. Results of computations 

The rectangular domain of  dimensions  2L×L  (L = 0.02 m)  shown in Figure 1 

has been considered. The shape of internal surface Γc is defined by the parabola 

with  vertex (0.02, 0.016). The following input data have been assumed: thermal 

conductivity of burned tissue λ1 = 0.1 W/(mK), thermal conductivity of  healthy 

tissue λ2 = 0.2 W/(mK) [4], blood perfusion rate GB = 0.5 kg/(m
3
s), specific heat 

of blood cB = 4200 J/(kgK), arterial blood  temperature TB = 37°C, metabolic heat 
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source Qmet = 200 W/m
3
, heat transfer coefficient α = 10 W/(m

2
K), ambient tempera- 

ture Ta = 20°C, boundary temperature Tb = 37°C (cf. condition (5)). 

In Figure 3 the temperature distribution in the domain considered is presented, 

while Figure 4 illustrates the course of temperature  on the external surface of skin 

tissue. 

 

 

Fig. 3. Temperature distribution 

 

Fig. 4. Temperature distribution on the external surface 

Conclusions 

The  heterogeneous domain being the composition of burned and healthy layers 

of skin tissue has been considered. The temperature distribution has been described 

by the system of two Pennes equations with different thermophysical parameters. 

The problem has been solved by means of  the boundary element method. The 

algorithm proposed allows one to determine the temperature field in burned and 
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healthy tissue and can be used as part of a computer system that enables one to 

predict the shape of the burn wound [5]. 

Acknowledgement 

The article and research are financed within the project N R13 0124 10 sponsored by the 

Polish National Centre for Research and Development. 

References 

[1] Brebbia C.A., Dominguez J., Boundary Elements. An Introductory Course, CMP, McGraw-Hill 

Book Company, London 1992. 

[2] Majchrzak E., Boundary Element Method in Heat Transfer, Publ. of the Techn. Univ. of Czest., 

Czestochowa 2001 (in Polish). 

[3] Pennes H.H., Analysis of tissue and arterial blood temperatures in the resting human forearm, 

Journal of Applied Physiology 1948, 1,  93-122. 

[4] Romero Mendez R., Jimenez-Lozano J.N., Sen M., Gonzalez F.J., Analytical solution of a Pennes 

equation for burn-depth determination from infrared thermographs, Mathematical Medicine 

and Biology 2010, 27, 21-38. 

[5] Majchrzak E., Dziewoński M., Nowak M., Kawecki M., Bachorz M.,.Kowalski P., The design of 

a system for assisting burn and chronic wound diagnosis, [in:]  E. Piętka, J. Kawa (eds.), ITIB 

2012, LNCS 7339, Springer-Verlag, Berlin-Heidelberg 2012, 110-117. 


