PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Recovery of base and precious metals from scrap TV boards using zig-zag air separator

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Waste of Electrical and Electronic Equipments (WEEE) is one of the fastest growing waste streams in the world. The treatment of WEEE with high content of precious metals (Au in particular) has received the most attention due to their high economic potential. The development of simple, environmentally friendly and cost-effective methods for the recovery of metals from “low-value” WEEE (e.g., <100 g/t Au) is important from the circular economy perspective. In this study, the separation of base (Cu) and precious (Ag) metals from scrap TV boards (STVBs) by using a zig-zag air separator was investigated. Size-reduced scrap STVBs (-1 mm) were subjected to separation tests after the removal of the fine fraction (-0.1 mm). The sized scrap material (-1 +0.1 mm) was determined to have a metal content of 15.4% Cu, 47 g/t Ag and 0.05% Fe, with no gold. In the air separation tests, the effect of air flow rate (4-16 m/s) on the recovery of metals was studied. Increasing the air flow rate resulted in low metal recoveries with concurrent high metal grades in the concentrate. Separation efficiency (%) calculations showed that the most efficient separation is obtained at the highest air flow rate of 16 m/s. At this flow rate, 15.4% of the material was recovered in the concentrate which contains 62.3% Cu and 198 g/t Ag with recoveries of 63.3% Cu and 73.9% Ag. The findings indicated that zig-zag air separators can be used to obtain a metal-rich fraction under suitable conditions of the flow regime.
Słowa kluczowe
Rocznik
Strony
art. no. 168255
Opis fizyczny
Bibliogr. 35 poz., fot., tab., wykr.
Twórcy
  • Karadeniz Technical University, Department of Mining Engineering, Division of Mineral&Coal Processing, Hydromet B&PM Research Group, 61080, Trabzon, Türkiye
autor
  • Karadeniz Technical University, Department of Mining Engineering, Division of Mineral&Coal Processing, Hydromet B&PM Research Group, 61080, Trabzon, Türkiye
  • Karadeniz Technical University, Department of Mining Engineering, Division of Mineral&Coal Processing, Hydromet B&PM Research Group, 61080, Trabzon, Türkiye
autor
  • Karadeniz Technical University, Department of Mining Engineering, Division of Mineral&Coal Processing, Hydromet B&PM Research Group, 61080, Trabzon, Türkiye
Bibliografia
  • CHAUHAN, G., JADHAO, P. R., PANT, K. K., NIGAM, K. D. P., 2018. Novel technologies and conventional processes for recovery of metals from waste electrical and electronic equipment: Challenges and opportunities – A review. J. Environ. Chem. Eng. 6(1), 1288–1304.
  • CUI, J., ZHANG, L., 2008. Metallurgical recovery of metals from electronic waste: a review. J. Hazard. Mater. 158(2–3), 228–256.
  • DA SILVA, M. d. F., DUTRA, A. J. B., BORGES, M. M., 2019. Enrichment of copper, lead, and tin by mechanical dry processing of obsolete printed circuit board residues. Mater. Res. 22(5), 1–7.
  • DAS, A., VIDYADHAR, A., MEHROTRA, S. P., 2009. A novel flowsheet for the recovery of metal values from waste printed circuit boards. Resour. Conserv. Recycl. 53(8), 464–469.
  • DEVECI, H., YAZICI, E. Y., AKCIL, A., ERUST, C., CELEP, O., 2019. Physical separation and hydrometallurgical processes for treatment of WEEE. XXIX. International Mineral Processing Congress, Paper No: 908, Russia.
  • DRZYMALA, J., 2007. Mineral processing. Foundations of theory and practice of minerallurgy. Ofic. Wyd. PWr, Wroclaw, Poland.
  • ESWARAIAH, C, KAVITHA, T., VIDYASAGAR, S., NARAYANAN, S. S., 2008. Classification of metals and plastics from printed circuit boards (PCB) using air classifier. Chem. Eng. Process., 47(4, 565–576
  • ESWARAIAH, C., SONI, R. K., 2015. Milling and classification of printed circuit boards for material recycling. Part. Sci. Technol. 33(6), 659–665.
  • GOOSEY, M., KELLNER, R., 2002. A scoping study: End-of-life printed circuit boards. Intellect and The Department Of Trade and Industry, Makati City.
  • HAGELÜKEN, C., 2006. Recycling of electronic scrap at Umicore precious metals refining. Acta Metall. Slovaca, 12, 111–120.
  • HE, Y., DUAN, C., WANG, H., ZHAO, Y., TAO, D., 2011. Separation of metal laden waste using pulsating air dry material separator. International Journal of Environmental Science & Technology, 8(1), 73–82.
  • IEA, 2021, The role of critical minerals in clean energy transitions. International Energy Agency (IEA), Paris.
  • IŞILDAR, A., RENE, E. R., VAN HULLEBUSCH, E. D., LENS, P. N. L., 2018. Electronic waste as a secondary source of critical metals: management and recovery technologies. Resour. Conserv. Recycl. 135, 296–312.
  • IŞILDAR, A., VAN HULLEBUSCH, E. D., LENZ, M., DU LAING, G., MARRA, A., CESARO, A., PANDA, S., AKCIL, A., KUCUKER, M., KUCHTA, K., 2019. Biotechnological strategies for the recovery of valuable and critical raw materials from waste electrical and electronic equipment (WEEE) – a review. J. Hazard. Mater. 362, 467–481.
  • JANG, Y.-C., TOWNSEND, T. G., 2003. Leaching of lead from computer printed wire boards and cathode ray tubes by municipal solid waste landfill leachates. Environ. Sci. Technol. 37(20), 4778–4784.
  • KAAS, A., MÜTZE, T., PEUKER, U. A., 2022. Review On Zigzag Air Classifier. Processes, 10(4), 764.
  • KAYA, M., 2016. Recovery of metals and nonmetals from electronic waste by physical and chemical recycling processes. Waste Management, 57, 64–90.
  • LI, J., XU, Z., ZHOU, Y., 2007. Application of corona discharge and electrostatic force to separate metals and nonmetals from crushed particles of waste printed circuit board. J. Electrostat. 65(4), 233–238.
  • LINCOLN, J. D., OGUNSEITAN, O. A., SHAPIRO, A. A., SAPHORES, J.-D. M., 2007. Leaching assessments of hazardous materials in cellular telephones. Environ. Sci. Technol. 41(7), 2572–2578.
  • ONGONDO, F. O., WILLIAMS, I. D., CHERRETT, T. J., 2011. How are WEEE doing? a global review of the management of electrical and electronic wastes. Waste Management, 31(4), 714–730.
  • PENG, M., LAYIDING, W., DONG, X., JIANGANG, G., GUANGHONG, D., 2004. A physical process for recycling and reusing waste printed circuit boards. Proceedings of The International Symposium on Electronics and The Environment, IEEE Computer Society, 237–242.
  • RIBEIRO, P. P. M., DOS SANTOS, I. D., DUTRA, A. J. B., 2019. Copper and metals concentration from printed circuit boards using a zig-zag classifier. J. Mater. Res. Technol. 8(1), 513–520.
  • SCHULZ, N. F., 1969. Separation Efficiency. Society for Mining, Metallurgy & Exploration, 69-B-44.
  • SETHURAJAN, M., VAN HULLEBUSCH, E. D., FONTANA, D., AKCIL, A., DEVECI, H., BATINIC, B., LEAL, J. P., GASCHE, T. A, KUCUKER, M. A., KUCHTA, K., NETO, I. F. F., SOARES, H. M. V. M., CHMIELARZ, A., 2019. Recent advances on hydrometallurgical recovery of critical and precious elements from end of life electronic wastes - a review. Crit. Rev. Environ. Sci. Technol. 49(3), 212–275.
  • SHITTU, O. S., WILLIAMS, I. D., SHAW, P. J., 2021. Global e-waste management: can WEEE make a difference? a review of e-waste trends, legislation, contemporary issues and future challenges. Waste Management, 120, 549–563.
  • SUN, Z., XIAO, Y., AGTERHUIS, H., SIETSMA, J., YANG, Y., 2016. Recycling of metals from urban mines – a strategic evaluation. J. Clean. Prod. 112, 2977–2987.
  • TUNCUK, A., STAZI, V., AKCIL, A., YAZICI, E. Y., DEVECI, H., 2012. Aqueous metal recovery techniques from e-scrap: hydrometallurgy in recycling. Miner. Eng., 25(1), 28-37.
  • WEN, X., ZHAO, Y., DUAN, C., ZHOU, X., JIAO, H., SONG, S., 2005. Study on metals recovery from discarded printed circuit boards by physical methods. Proceedings of The International Symposium on Electronics and The Environment, IEEE Computer Society, 121–128.
  • WIDMER, R., OSWALD-KRAPF, H., SINHA-KHETRIWAL, D., SCHNELLMANN, M., BÖNI, H., 2005. Global perspectives on e-waste. Environ. Impact Assess. Rev. 25(5), 436–458.
  • WILLS, B. A., NAPIER-MUNN, T., 2006. Wills’ mineral processing technology: an introduction to the practical aspects of ore treatment and mineral recovery. Butterworth-Heinemann, London.
  • YAZICI, E., DEVECI, H., ALP, I., AKÇIL, A., YAZICI, R., 2010. Characterisation of computer printed circuit boards for hazardous properties and beneficiation studies. XXV. International Mineral Processing Congress, Brisbane, 4009-4015.
  • YAZICI, E. Y., 2012. Recovery of metals from e-wastes by physical and hydrometallurgical processes, Phd Thesis, Karadeniz Technical University, Trabzon, Türkiye (in Turkish).
  • YAZICI, E. Y., DEVECI, H., 2016. Economic potential and environmental characterisation of waste of printed circuit boards. Scientific Mining Journal, 55(3), 35-44.
  • ZHANG, S., FORSSBERG, E., 1998. Mechanical recycling of electronics scrap - the current status and prospects. Waste Manag. Res. 16(2), 119–128.
  • ZHAO, Y., WEN, X., LI, B., TAO, D., 2004. Recovery of copper from waste printed circuit boards. Miner. Metall. Proc. 21, 99-102.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5c1de74c-2b4a-46bd-925a-4e35cf1d8f12
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.