PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Oscillation for certain impulsive partial difference equations

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, we obtain some sufficient criteria for the oscillation of the solutions of linear impulsive partial difference equations with continuous variables.
Wydawca
Rocznik
Strony
79--102
Opis fizyczny
Bibliogr. 15 poz.
Twórcy
autor
  • Bolvadin Vocational School Afyon Kocatepe University 03300 Afyonkarahisar, Turkey
autor
  • Department of Mathematics, Faculty of Science and Arts, Ans Campus Afyon Kocatepe University 03200 Afyonkarahisar, Turkey
autor
  • Department of Mathematics, Faculty of Science and Literature, Mugla University, Mugla, Turkey
Bibliografia
  • [1] R. P. Agarwal, Difference Equations and Inequalities, Marcel Dekker, New York, 1992.
  • [2] R. P. Agarwal, F. Karakoc, Oscillation of impulsive partial difference equations with continuous variables, Math. Comput. Modelling 50 (2009), 1262–1278.
  • [3] R. P. Agarwal, P. J. Y. Wong, Advanced Topics in Difference Equations, Kluwer Academic, Dordrecht, 1997.
  • [4] D. D. Baĭnov, M. B. Dimitrova, A. B. Dishlies, Oscillation of bounded solutions of impulsive differential–difference of second order, Appl. Math. Comput. 114 (2000), 61–68.
  • [5] D. D. Baĭnov, E. Minchev, Forced oscillation of solutions of impulsive nonlinear parabolic differential–difference equations, J. Korean Math. Soc. 35(4) (1998), 881–890.
  • [6] D. D. Baĭnov, E. Minchev, Oscillation of solutions of impulsive nonlinear parabolic differential–difference equations, Internat. J. Theoret. Phys. 35(1) (1996), 207–215.
  • [7] D. D. Baĭnov, P. S. Simeonov. Impulsive Differential Equations Asymtotic Properties of the Solutions, World Scientific, Singapore, 1995.
  • [8] B. T. Cui, Y. Liu, Oscillatory for partial difference equations with continuous variables, J. Comput. Appl. Math. 154 (2003), 373–391.
  • [9] V. Lakshmikantham, D. D. Ba˘ınov, P. S. Simeonov, Theory of Impulsive Differential Equations, World Scientific, Singapore, 1998.
  • [10] E. Minchev, Oscillation of solutions of impulsive nonlinear hyperbolic differential–difference equations, Math. Balcanica 12(1–2) (1998), 215–224.
  • [11] B. G. Zhang, Oscillation criteria of partial difference equations with continuous variables, Acta Math. Sinica 42(3) (1999), 487–494, (in Chinese).
  • [12] B. G. Zhang, B. M. Liu, Oscillation criteria of certain nonlinear partial difference equations, Comput. Math. Appl. 38 (1999), 107–112.
  • [13] B. G. Zhang, B. M. Liu, Necessary and sufficient conditions for oscillation of partial difference equations with continuous variables, Comput. Math. Appl. 38 (1999), 163–167.
  • [14] B. G. Zhang, Y. Zhou, Qualitative Analysis of Delay Partial Difference Equations, Hindawi Publishing Corporation, New York, 2007.
  • [15] Y. Zhou, Existence of bounded and unbounded nonoscillatory solutions of nonlinear partial difference equations, J. Math. Anal. Appl. 332(2) (2007), 1267–1277.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5c1d5769-5e54-4a40-b205-3106b5c90649
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.