PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Investigating the Effects of PU-Based Back-Coating with Boric Acid and Titanium Dioxide Additives on Flame Retardancy Levels and Comfort Properties of 100% Cotton Denim Fabric

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This study aimed to develop a cost-effective and resource-efficient application to enhance the thermal stability, flame retardancy, self-cleaning, and antibacterial properties of cotton denim fabrics through a single-step, flexible, and simple polyurethane (PU) based back-coating method, ultimately increasing the use of denim fabrics in daily and work clothes thanks to the increased functionality. This method utilizes boric acid (H3BO3) and a binary composite of H3BO3-titanium dioxide (TiO2) as functional additives while considering comfort parameters. Limiting oxygen index (LOI) and vertical burning tests were conducted to explore the thermal stability and flame retardancy of the samples, while assessments of air permeability, water vapour permeability, thermal resistance, and thermal absorptivity were performed to investigate the comfort properties. Comparing two kinds of back-coated denim fabrics, H3BO3-TiO2 back-coated cotton fabric showed the best flame retardancy with the lowest char length (45 mm) and highest LOI (27%). The air permeability values of back-coated fabrics decreased by approximately half compared to the untreated denim fabric. Although the water vapour permeability values decreased, they were less affected by the coating. Coating application reduced thermal conductivity and thermal absorbency, resulting in more thermally resistant denim fabric. This study demonstrates the potential utility of a PU-based coating incorporating TiO2 and H3BO3 on traditional cotton denim fabrics to enhance flame resistance while minimizing any adverse effects on the overall thermal comfort of the fabric.
Rocznik
Strony
13--21
Opis fizyczny
Bibliogr. 48 poz., rys., tab.
Twórcy
  • Gaziantep University, Graduate School of Natural & Applied Sciences, Textile Engineering Department, Üniversite Bulvarı, 27310 Şehitkamil, Gaziantep, Turkey
  • Gaziantep University, Graduate School of Natural & Applied Sciences, Textile Engineering Department, Üniversite Bulvarı, 27310 Şehitkamil, Gaziantep, Turkey
  • Gaziantep University, Graduate School of Natural & Applied Sciences, Textile Engineering Department, Üniversite Bulvarı, 27310 Şehitkamil, Gaziantep, Turkey
Bibliografia
  • 1. Adamu BF. Permeability and Moisture Management Properties of Denim Fabric Made from Cotton, Spandex, and Polyester. J Inst Eng India Ser E 2022;103:253–8. https://doi.org/10.1007/s40034-022-00249-1
  • 2. Becenen N., Eyi G. Investigation of the flammability properties of a cotton and elastane blend denim fabric in the presence of boric acid, borax, and nanoSiO 2 . J Text Inst 2021;112:1080–92. https://doi.org/10.1080/00405000.2020.1 800974
  • 3. Periyasamy AP., Militky J. Denim and consumers’ phase of life cycle. In: Muthu SS, editor. Sustain. Denim, Sawston: Woodhead; 2017, p. 257–82. https://doi.org/10.1016/B978-0-08-102043-2.00010- 1
  • 4. Becenen N., Erdoğan S. Chitosan and nano-TiO 2 coating improves the flame retardancy of dyed and undyed denim fabrics by increasing the charring. J Ind Text 2022;51:1252S-1278S. https://doi.org/10.1177/15280837221099632
  • 5. Talebi S., Montazer M. Denim Fabric with Flame retardant, hydrophilic and self-cleaning properties conferring by in-situ synthesis of silica nanoparticles. Cellulose 2020;27:6643–61. https://doi. org/10.1007/s10570-020-03195-6
  • 6. Liu Y., Wang X., Qi K, Xin JH. Functionalization of cotton with carbon nanotubes. J Mater Chem 2008;18:3454– 60. https://doi.org/10.1039/b801849a
  • 7. Javed A., Wiener J., Saskova J., Müllerová J. Zinc Oxide Nanoparticles (ZnO NPs) and N-Methylol Dimethyl Phosphonopropion Amide (MDPA) System for Flame Retardant Cotton Fabrics. Polymers 2022;14:3414. https://doi.org/10.3390/polym14163414
  • 8. Ling C., Guo L., Wang Z. A review on the state of flame-retardant cotton fabric: Mechanisms and applications. Ind Crops Prod 2023;194:116264. https://doi.org/10.1016/j.indcrop.2023.116264
  • 9. Zhang K., Zong L., Tan Y., Ji Q., Yun W., Shi R., et al. Improve the flame retardancy of cellulose fibers by grafting zinc ion. Carbohydr Polym 2016;136:121– 7. https://doi.org/10.1016/j.carbpol.2015.09.026
  • 10. Abed A., Bouazizi N., Giraud S., El Achari A., Campagne C., Vieillard J., et al. Functional Cotton Fabric: Enhancement in Flame Retardancy and Thermal Stability. Int J Nanoparticles Nanotechnol 2020;6:1–13. https://doi.org/10.35840/2631-5084/5537
  • 11. Attia N., Ahmed H., Yehia D., Hassan M., Zaddin Y. Novel synthesis of nanoparticles-based back coating flame-retardant materials for historic textile fabrics conservation. J Ind Text 2017;46:1379–92. https://doi.org/10.1177/1528083715619957
  • 12. Wang Q., Undrell JP., Gao Y., Cai G., Buffet J-C., Wilkie CA., et al. Synthesis of Flame-Retardant Polypropylene/LDHBorate Nanocomposites. Macromolecules 2013;46:6145–50. https://doi.org/10.1021/ma401133s
  • 13. Zhou C., Zhou S., You F., Wang Z., Li D., Li G., et al. Effectively improving flame retardancy levels of finished cotton fabrics only by simple binary silicon-boron oxide sols. J Polym Res 2023;30:437. https://doi.org/10.1007/s10965-023-03812-5
  • 14. Akarslan F. Investigation on Fire Retardancy Properties of Boric Acid Doped Textile Materials. Acta Phys Pol A 2015;128:B-403-B-405. https://doi.org/10.12693/APhysPolA.128.B-403
  • 15. Qiu X., Li Z., Li X., Zhang Z. Flame retardant coatings prepared using layer by layer assembly: A review. Chem Eng J 2018;334:108–22. https://doi.org/10.1016/j.cej.2017.09.194
  • 16. Duan H., Li J., Gu J., Lu L., Qi D. Onepot preparation of cotton fibers with simultaneous enhanced durable flameretardant and antibacterial properties by grafting copolymerized with vinyl monomers. React Funct Polym 2022;181:105438. https://doi.org/10.1016/j.reactfunctpolym.2022.105438
  • 17. Ayesh M., Horrocks AR., Kandola BK. The Effect of Combined Atmospheric Plasma/UV Treatments on Improving the Durability of Flame Retardants Applied to Cotton. Molecules 2022;27:8737. https://doi.org/10.3390/molecules27248737
  • 18. Bentis A., Boukhriss A., Gmouh S. Flame-retardant and water-repellent coating on cotton fabric by titania–boron sol–gel method. J Sol-Gel Sci Technol 2020;94:719–30. https://doi.org/10.1007/s10971-020-05224-z
  • 19. Zope IS., Foo S., Seah DGJ., Akunuri AT., Dasari A. Development and Evaluation of a Water-Based Flame Retardant Spray Coating for Cotton Fabrics. ACS Appl Mater Interfaces 2017;9:40782–91. https://doi.org/10.1021/acsami.7b09863
  • 20. Nosaka T., Lankone R., Westerhoff P., Herckes P. Flame retardant performance of carbonaceous nanomaterials on polyester fabric. Polym Test 2020;86:106497. https://doi.org/10.1016/j.polymertesting.2020.106497
  • 21. Bhuiyan MAR., Wang L., Shanks RA., Ding J. Polyurethane–superabsorbent polymer-coated cotton fabric for thermophysiological wear comfort. J Mater Sci 2019;54:9267–81. https://doi.org/10.1007/s10853-019-03495-8
  • 22. Bhuiyan MAR., Wang L., Anjuman Ara Z., Saha T., Wang X. Omniphobic polyurethane – superabsorbent polymer – fluoropolymer surface coating on cotton fabric for chemical protection and thermal comfort. J Ind Text 2022;51:6590S-6611S. https://doi.org/10.1177/15280837221078535
  • 23. Liang S., Neisius NM., Gaan S. Recent developments in flame retardant polymeric coatings. Prog Org Coat 2013;76:1642–65. https://doi.org/10.1016/j.porgcoat.2013.07.014
  • 24. Ortelli S., Malucelli G., Cuttica F., Blosi M., Zanoni I., Costa AL. Coatings made of proteins adsorbed on TiO2 nanoparticles: a new flame retardant approach for cotton fabrics. Cellulose 2018;25:2755–65. https://doi.org/10.1007/s10570-018-1745-z
  • 25. Horrocks AR. Overview of traditional flame retardant solutions including coating and back-coating technologies. In: Alongi J, Horrocks AR, Carosio F, Malucelli G, editors. Update Flame Retard. Text. State Art Environ. Issues Innov. Solut., Shawburry, UK: Smithers Rapra; 2013, p. 123–78.
  • 26. Özer MS., Wesemann M-J, Gaan S. Flame retardant back-coated PET fabric with DOPO-based environmentally friendly formulations. Prog Org Coat 2023;175:107363. https://doi.org/10.1016/j.porgcoat.2022.107363
  • 27. Yao Z., Liu X., Qian L., Chen Y., Xu B., Qiu Y. Synthesis and Characterization of Aluminum 2-Carboxyethyl-PhenylPhosphinate and Its Flame-Retardant Application in Polyester. Polymers 2019;11:1969. https://doi.org/10.3390/polym11121969
  • 28. Sun Y., Liu C., Hong Y., Liu R., Zhou X. Synthesis and application of selfcrosslinking and flame retardant waterborne polyurethane as fabric coating agent. Prog Org Coat 2019;137:105323. https://doi.org/10.1016/j.porgcoat.2019.105323
  • 29. Gite VV., Mahulikar PP., Hundiwale DG. Preparation and properties of polyurethane coatings based on acrylic polyols and trimer of isophorone diisocyanate. Prog Org Coat 2010;68:307–12. https://doi.org/10.1016/j.porgcoat.2010.03.008
  • 30. Havlova M. Air Permeability, Water Vapour Permeability And Selected Structural Parameters Of Woven Fabrics. Fibres Text 2020;27:12–8.
  • 31. Eryuruk SH. The effects of elastane and finishing properties on wicking, drying and water vapour permeability properties of denim fabrics. Int J Cloth Sci Technol 2019;32:208–17. https://doi.org/10.1108/IJCST-01-2019-0003
  • 32. Gültekin E., Çelik Hİ., Nohut S., Elma SK. Predicting air permeability and porosity of nonwovens with image processing and artificial intelligence methods. J Text Inst 2020;111:1641–51. https://doi.org/10.108 0/00405000.2020.1727267.
  • 33. Berkalp ÖB. Air Permeability & Porosity in Spun-laced Fabrics. Fibres Text East Eur 2006;14:81–5.
  • 34. Güneşoğlu S. The statistical investigation of the effect of hydrophilic polyurethane coating on various properties of denim fabric. Tekst Ve Konfeksiyon 2015;25:256–62.
  • 35. Mondal S., Hu JL. A novel approach to excellent UV protecting cotton fabric with functionalized MWNT containing water vapor permeable PU coating. J Appl Polym Sci 2007;103:3370–6. https://doi.org/10.1002/app.25437
  • 36. Ozen I. Multi-layered Breathable Fabric Structures with Enhanced Water Resistance. J Eng Fibers Fabr 2012;7:63–9. https://doi.org/10.1177/155892501200700402
  • 37. Lubnin A., Anderle G., Snow G., Varn R., Lenhard S. Novel, “breathable” polyurethane dispersions. Paint Coat Ind 2005;21:26–35.
  • 38. Wei B., Xu F., Azhar SW., Li W., Lou L., Liu W., et al. Fabrication and property of discarded denim fabric/polypropylene composites. J Ind Text 2015;44:798–812. https://doi.org/10.1177/1528083714550055
  • 39. Hu X., Tian M., Qu L., Zhu S., Han G. Multifunctional cotton fabrics with graphene/polyurethane coatings with farinfrared emission, electrical conductivity, and ultraviolet-blocking properties. Carbon 2015;95:625–33. https://doi.org/10.1016/j.carbon.2015.08.099
  • 40. Potočić Matković VM., Čubrić IS., Skenderi Z. Thermal resistance of polyurethane-coated knitted fabrics before and after weathering. Text Res J 2014;84:2015–25. https://doi.org/10.1177/0040517514537368
  • 41. Gurudatt K., De P., Sarkar RK., Bardhan MK. Studies on Influence of Blowing Agent in Polymeric Coating Formulations on Thermal Resistance of Coated Textiles. J Ind Text 2001;31:103–22. https://doi.org/10.1106/LN83-8YPN-TAXAMMMM
  • 42. Abbas A., Zhao Y., Ali U., Lin T. Improving heat-retaining property of cotton fabrics through surface coatings. J Text Inst 2017;108:1808–14. https://doi.org/10.1080/00405000.2017.1292638
  • 43. Souza JM., Sampaio S., Silva WC., De Lima SG., Zille A., Fangueiro R. Characterization of functional single jersey knitted fabrics using nonconventional yarns for sportswear. Text Res J 2018;88:275–92. https://doi.org/10.1177/0040517516677226
  • 44. Mangat MM., Hes L. Comfort aspects of denim garments. In: Paul R, editor. Denim Manuf. Finish. Appl., Woodhead Publishing; 2015, p. 461–79. https://doi.org/10.1016/B978-0-85709-843-6.00015-9
  • 45. Lewis DM., Hawkes JA., Hawkes L., Mama J. A new approach to flame‐ retardant cellulosic fabrics in an environmentally safe manner. Color Technol 2020;136:512–25. https://doi.org/10.1111/cote.12504
  • 46. Younis AA. Evaluation of the flammability and thermal properties of a new flame retardant coating applied on polyester fabric. Egypt J Pet 2016;25:161–9. https://doi.org/10.1016/j.ejpe.2015.04.001
  • 47. Martín C., Ronda JC., Cádiz V. Boroncontaining novolac resins as flame retardant materials. Polym Degrad Stab 2006;91:747–54. https://doi.org/10.1016/j.polymdegradstab.2005.05.025
  • 48. Poon C., Kan C. Effects of TiO 2 and curing temperatures on flame retardant finishing of cotton. Carbohydr Polym 2015;121:457–67. https://doi.org/10.1016/j.carbpol.2014.11.064
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5c1ba289-c260-478e-9e69-4f0520fc9682
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.