Identyfikatory
Warianty tytułu
Zastosowanie optymalizacji topologicznej w metodzie strut-and-tie – przegląd literatury
Języki publikacji
Abstrakty
The paper delivers an overview of the literature concerning the adaption of Topology Optimisation (TO) to the Strut-and-Tie Method (STM). In the beginning, the foundations and basics of STM are briefly summarised. STM is a practical implementation of the lower bound theory of plasticity for reinforced concrete (RC). It is generally used to design so-called D-regions (i.e. Discontinuity caused by irregular geometry or concentrated load) working under the complex stress state. These regions are modelled with the equivalent truss consisting of struts (representing the flow of compressive forces carried by concrete), ties (representing rebar) and nodes. The STM algorithm’s most demanding part is determining the layout of the truss, which correctly reflects force flow in a specific D-region. During this stage, TO methods can eliminate the designer’s arbitrary decisions. Analysed literature sources are divided into two groups differing in the adopted TO algorithms: the former uses layout optimisation procedures for trusses, whereas the latter uses TO methods for continuum domains. In the first approach, the equivalent truss is obtained explicitly as an outcome of the TO phase. In the second approach, the material continuum material layout is an inspiration for the ST model or is post-processed with image analysis methods and possibly shape optimisation methods to obtain bending-free bar structures. The advantages and limitations of both approaches are put forward in the conclusion section. Further development in this field is very likely, so future prospects are also anticipated.
W artykule przedstawiono przegląd literaturowy dotyczący zastosowania optymalizacji topologicznej (TO) do metody Strut-and-Tie (STM). Na początku krótko przedstawiono podstawy teoretyczne i algorytm tej metody. STM jest inżynierską implementacją twierdzenia o dolnym oszacowaniu nośności plastycznej do projektowania konstrukcji żelbetowych. Warto podkreślić, że twierdzenie to zostało sformułowane dla materiałów sprężysto-idealnie plastycznych, a beton wykazuje ograniczoną zdolność do plastycznej redystrybucji naprężeń, więc właściwe oszacowanie nośności konstrukcji wymaga spełnienia dodatkowych warunków sformułowanych głównie w oparciu o wyniki badań eksperymentalnych. W ogólności STM jest stosowana do projektowania tzw. obszarów D (ang. Discontinuity – nieciągłość spowodowana zmianą geometrii lub obciążeniem skupionym) pracujących w złożonym stanie naprężenia. Obszary te modelowane są jako zastępcza kratownica składająca się z: zastrzałów (ang. Struts, odwzorowujących przepływ sił ściskających przenoszonych przez beton), cięgien (ang. Ties, reprezentujących zbrojenie) i węzłów. Największym wyzwaniem dla użytkownika STM jest dobór schematu kratownicy, który najlepiej odzwierciedla przepływ sił w konkretnym obszarze D. Podczas tego etapu metody TO mogą wyeliminować arbitralną decyzję projektanta. Analizowane źródła literaturowe zostały podzielone na dwie grupy różniące się stosowanym podejściem do optymalizacji topologicznej. W pierwszej stosowano procedury optymalizacji dyskretnego układu kratowego, a w drugim metody optymalizacji opracowane dla continuum. W pierwszym podejściu kratownica zastępcza otrzymywana jest bezpośrednio w procesie optymalizacji topologii kratownicy metodą siatki bazowej. Natomiast w drugim wynik optymalizacji dla obszaru ciągłego stanowi inspirację do doboru kształtu kratownicy lub jest poddawany post-processingowi metodami obróbki obrazu i ewentualnie optymalizacji kształtu w celu uzyskania prętowych układów wolnych od zginania, Zalety i ograniczenia obu podejść podsumowane są we wnioskach. Podjęto również próbę przewidzenia kierunków dalszego rozwoju tego podejścia do STM.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
295--311
Opis fizyczny
Bibliogr. 56 poz., il.
Twórcy
autor
- Warsaw University of Technology, Faculty of Civil Engineering, Warsaw, Poland
Bibliografia
- [1] J. Tejchman and J. Bobiński, Continuous and Discontinuous Modelling of Fracture in Concrete Using FEM. Berlin, Heidelberg: Springer, 2013.
- [2] P. Stempin and W. Sumelka, “Space-fractional small-strain plasticity model for microbeams including grain size effect”, International Journal of Engineering Science, vol. 175, art. no. 103672, 2022, doi: 10.1016/j.ijengsci.2022.103672.
- [3] W. Ritter, “Construction Techniques of Hennebique”, Schweizerische Bauzeitung, vol. 33, no. 7, pp. 49-52, 1899, doi: 10.5169/seals-21306 (in German).
- [4] E. Morsch, Reinforced concrete construction – theory and application. Stuttgart: Wayss & Freytag, 1902 (in German).
- [5] E. Rausch, Calculation of reinforced concrete against torsion and shear. Springer Berlin Heidelberg, 1938 (in German).
- [6] S.E.D.E. El-Metwally and W.F. Chen, Structural concrete: Strut-and-tie models for unified design. Boca Raton: CRC Press, 2017.
- [7] D.C. Drucker, “On structural concrete and the theorems of limit analysis”, IABSE Publications , vol. 21, pp. 49-59, 1961, doi: 10.5169/seals-18246.
- [8] M.D. Kotsovos, Finite-element modelling of structural concrete: Short-term static and dynamic loading conditions. Boca Raton: CRC Press, 2015.
- [9] J. Schlaich, K. Schafer, and M. Jennewein, “Toward a Consistent Design of Structural Concrete”, PCI Journal, vol. 32, no. 3, pp. 74-150, 1987.
- [10] J. Schlaich and K. Schiifer, “Design and detailing of structural concrete using strut-and-tie models”, The Structural Engineer, vol. 69, no. 6, pp. 113-125, 1991.
- [11] N. Pressmair, et al., “Bridging the gap between mathematical optimization and structural engineering: Design, experiments and numerical simulation of optimized concrete girders”, Structural Concrete, vol. 24, no. 4, pp. 5314-5330, 2023, doi: 10.1002/suco.202201096.
- [12] EN 1992-1-1 Eurocode 2: Design of concrete structures, Part 1-1 General rules and rules for buildings.
- [13] “Front Matter”, in fib Model Code for Concrete Structures 2010. Wilhelm Ernst & Sohn, 2013, pp. I-XXXIII, doi: 10.1002/9783433604090.fmatter.
- [14] AASHTO LRFD Bridge Design Specifications. Washington, D.C., 2020.
- [15] ACI 318-19 Building code requirements for structural concrete. American Concrete Institute, 2019.
- [16] E. Lim and S.J. Hwang, “Modeling of the strut-and-tie parameters of deep beams for shear strength prediction”, Engineering Structures, vol. 108, pp. 104-112, 2016, doi: 10.1016/j.engstruct.2015.11.024.
- [17] S. Woliński, “Criteria for selecting models of the ST truss analogy in the design of RC elements”, Inzynieria i Budownictwo, no. 9, pp. 494-497, 2012 (in Polish).
- [18] M.A. Ali and R.N. White, “Automatic Generation of Truss Model for Optimal Design of Reinforced Concrete Structures”, ACI Structural Journal, vol. 98, no. 4, pp. 431-442, 2001.
- [19] N. Kostic, “Topologie des champs de contraintes pour l’analyse des structures en béton armé – Plan de recherche”, École Polytechnique Federale De Lausanne, 2006.
- [20] F. Biondini, F. Bontempi, and P.G. Malerba, “Stress path adapting Strut-and-Tie models in cracked and uncracked R.C. elements”, Structural Engineering and Mechanics, vol. 12, no. 6, pp. 685-698, 2001, doi: 10.12989/sem.2001.12.6.685.
- [21] T. Sokół, “A 99 line code for discretized Michell truss optimization written in Mathematica”, Structural and Multidisciplinary Optimization, vol. 43, no. 2, pp. 181-190, 2011, doi: 10.1007/s00158-010-0557-z.
- [22] K. Bołbotowski, M. Knauff, and T. Sokół, “Applications of truss topology optimization in the design of reinforced concrete structures using “Strut and Tie” models”, Budownictwo i Architektura, vol. 12, no. 1, pp. 91-98, 2013 (in Polish).
- [23] K. Bołbotowski and T. Sokół, “New method of generating Strut and Tie models using truss topology optimization”, in Advances in Mechanics: Theoretical, Computational and Interdisciplinary Issues – 3rd Polish Congress of Mechanics, PCM 2015 and 21st International Conference on Computer Methods in Mechanics, CMM 2015. 2016, pp. 97-100.
- [24] T. Lewiński, “On algebraic equations of elastic trusses, frames and grillages”, Journal of Theoretical and Applied Mechanics, vol. 39, pp. 307-322, 2001.
- [25] K. Bołbotowski, “Topology optimization of Strut and Tie models in application to reinforced concrete frame corner”, Engineer’s thesis, Warsaw University of Technology, 2013 (in Polish).
- [26] S. Mozaffari, M. Akbarzadeh, and T. Vogel, “Graphic statics in a continuum: Strut-and-tie models for reinforced concrete”, Computers and Structures, vol. 240, art. no. 106335, 2020, doi: 10.1016/j.compstruc.2020.106335.
- [27] S. Mozaffari, “Computational Strut-and-Tie Modeling Explorations of Algebraic Graphic Statics and Layout Optimization”, Ph.D. thesis, ETH Zurich, 2022.
- [28] T. Zhao, A.A. Alshannaq, D.W. Scott, and G.H. Paulino, “Strut-and-Tie Models Using Multi-Material and Multi-Volume Topology Optimization: Load Path Approach”, ACI Structural Journal, vol. 120, no. 6, pp. 7-22, 2023, doi: 10.14359/51739089.
- [29] W. F. Baker, A. Beghini, and A. Mazurek, “Applications of structural optimization in architectural design”, 20th Analysis and Computation Specialty Conference – Proceedings of the Conference. ASCE, 2012, pp. 257-266, doi: 10.1061/9780784412374.023.
- [30] M. Bruggi, “Generating strut-and-tie patterns for reinforced concrete structures using topology optimization”, Computers and Structures, vol. 87, no. 23-24, pp. 1483-1495, 2009, doi: 10.1016/j.compstruc.2009.06.003.
- [31] M. Bruggi, “On the automatic generation of strut and tie patterns under multiple load cases with application to the aseismic design of concrete structures”, Advances in Structural Engineering, vol. 13, no. 6, pp. 1167-1181, 2016, doi: 10.1260/1369-4332.13.6.1167.
- [32] M. Bruggi, “A numerical method to generate optimal load paths in plain and reinforced concrete structures”, Computers and Structures, vol. 170, pp. 26-36, 2016, doi: 10.1016/j.compstruc.2016.03.012.
- [33] Z.Q. He and Z. Liu, “Optimal three-dimensional strut-and-tie models for anchorage diaphragms in externally prestressed bridges”, Engineering Structures, vol. 32, no. 8, pp. 2057-2064, 2010, doi: 10.1016/j.engstruct.2010.03.006.
- [34] Y. Xia, M. Langelaar, and M.A.N. Hendriks, “A critical evaluation of topology optimization results for strutand-tie modeling of reinforced concrete”, Computer-Aided Civil and Infrastructure Engineering, vol. 35, no. 8, pp. 850-869, 2020, doi: 10.1111/mice.12537.
- [35] Y. Xia, M. Langelaar, and M.A.N. Hendriks, “Automated optimization-based generation and quantitative evaluation of Strut-and-Tie models”, Computers & Structures, vol. 238, art. no. 106297, 2020, doi: 10.1016/j.compstruc.2020.106297.
- [36] Y. Xia, M. Langelaar, and M.A.N. Hendriks, “Optimization-based three-dimensional strut-and-tie model generation for reinforced concrete”, Computer-Aided Civil and Infrastructure Engineering, vol. 36, no. 5, pp. 526-543, 2021, doi: 10.1111/mice.12614.
- [37] Y. Xia, M. Langelaar, and M.A.N. Hendriks, “Optimization-based strut-and-tie model generation for reinforced concrete structures under multiple load conditions”, Engineering Structures, vol. 266, 2022, doi: 10.1016/j.engstruct.2022.114501.
- [38] W. Qiao and G. Chen, “Generation of strut-and-tie models in concrete structures by topology optimization based on moving morphable components”, Engineering Optimization, vol. 53, no. 7, pp. 1251-1272, 2021, doi: 10.1080/0305215X.2020.1781843.
- [39] W. Zhang, J. Yuan, J. Zhang, and X. Guo, “A new topology optimization approach based on Moving Morphable Components (MMC) and the ersatz material model”, Structural and Multidisciplinary Optimization, vol. 53, no. 6, pp. 1243-1260, 2016, doi: 10.1007/s00158-015-1372-3.
- [40] M.B.M. Cedrim, E.N. Lages, and A. da S.R. Barboza, “Proposition and analysis of strut and tie models for short corbels from techniques of topology optimization”, Revista IBRACON de Estruturas e Materiais, vol. 14, no. 2, pp. 1-18, 2021, doi: 10.1590/s1983-41952021000200012.
- [41] L. Zhou and S. Wan, “Development of strut-and-tie models using topology optimization based on modified optimal criterion”, Structural Concrete, vol. 22, no. 6, pp. 3304-3314, 2021, doi: 10.1002/suco.202100123.
- [42] Y. Fang, H. Zhang, and B. Yin, “Construction of strut-and-tie models for members under complex stress states based on topology optimization”, Structural Concrete, vol. 24, no. 4, pp. 5233-5244, 2023, doi: 10.1002/suco.202201116.
- [43] M.A.N. Hendriks and M. Roosen, “RTD 1016-1:2020 Guidelines for Nonlinear Finite Element Analysis of Concrete Structures”, Technical Report, Rijkswaterstaat Centre for Infrastructure, 2020.
- [44] H.E. Fairclough, L. He, T.J. Pritchard, and M. Gilbert, “LayOpt: an educational web-app for truss layout optimization”, Structural and Multidisciplinary Optimization, vol. 64, no. 4, pp. 2805-2823, 2021, doi: 10.1007/s00158-021-03009-8.
- [45] L. He, T. Pritchard, J. Maggs, M. Gilbert, and L. Hongjia, Peregrine User Manual v7.0. Sheffield, 2024.
- [46] M. Ohsaki and K. Hayashi, “Force density method for simultaneous optimization of geometry and topology of trusses”, Structural and Multidisciplinary Optimization, vol. 56, no. 5, pp. 1157-1168, 2017, doi: 10.1007/s00158-017-1710-8.
- [47] T. Urban and J. Krakowski, “Punching shear behavior of thick reinforced concrete slabs according to Strut-and-Tie model”, Budownictwo i Architektura, vol. 13, no. 3, pp. 183-191, 2014 (in Polish).
- [48] L. Buda-Ożóg, K. Sienkowska, and I. Skrzypczak, “Reliability of beams subjected to torsion designed using STM”, Archives of Civil Engineering, vol. 66, no. 3, pp. 555-573, 2020, doi: 10.24425/ace.2020.134413.
- [49] T. Sokól, “Multi-load truss topology optimization using the adaptive ground structure approach”, in Recent Advances in Computational Mechanics, T. Łodygowski, J. Rakowski, and P. Litewka, Eds. London: CRC Press, 2014, pp. 9-16.
- [50] L. Buda-Ożóg, Reliability of RC structures designed using the Strut and Tie method. Rzeszów: Oficyna Wydawnicza Politechniki Rzeszowskiej, 2019 (in Polish).
- [51] L. Buda-Ożóg, “Probabilistic assessment of load-bearing capacity of deep beams designed by strut-and-tie method”, MATEC Web of Conferences, vol. 262, art. no. 08001, 2019, doi: 10.1051/matecconf/201926208001.
- [52] B. Belletti, B. Calcavecchia, D. Ferretti, and S. Ravasini, “Capacity assessment of uncorroded and corroded dapped-end beams by NLFE and strut-and-tie based methods”, Structural Concrete, vol. 25, no. 2, pp. 1275-1304, 2024, doi: 10.1002/suco.202301020.
- [53] A.T. Gaynor, J.K. Guest, and C.D. Moen, “Reinforced Concrete Force Visualization and Design Using Bilinear Truss-Continuum Topology Optimization”, Journal of Structural Engineering, vol. 139, no. 4, pp. 607-618, 2013, doi: 10.1061/(asce)st.1943-541x.0000692.
- [54] H. Cui, L. Xie, M. Xiao, and M. Deng, “Conceptual design of reinforced concrete structures using truss-like topology optimization”, Archives of Civil Engineering, vol. 68, no. 3, pp. 523-537, 2022, doi: 10.24425/ace.2022.141900.
- [55] H. Cui, J. Xia, L.Wu, and M. Xiao, “Reinforcement layout design of three-dimensional members under a state of complex stress”, Archives of Civil Engineering, vol. 69, no. 1, pp. 421-436, 2023, doi: 10.24425/ace.2023.144181.
- [56] T. Zegard and G.H. Paulino, “Truss layout optimization within a continuum”, Structural and Multidisciplinary Optimization, vol. 48, no. 1, pp. 1-16, 2013, doi: 10.1007/s00158-013-0895-8.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5c15dbe6-8781-4482-ac16-bfa2a70746cf
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.