
POLISH MARITIME RESEARCH, No S2/201760

POLISH MARITIME RESEARCH Special Issue 2017 S2 (94) 2017 Vol. 24; pp. 60-65
10.1515/pomr-2017-0065

RESEARCH ON THE MARITIME COMMUNICATION
CRYPTOGRAPHIC CHIP’S COMPILER OPTIMIZATION

Li Sheng Ph.D
Department of Electrical Engineering,Zhengzhou institute of information science and technology, Zhengzhou, Henan, China
Railway Police College, Zhengzhou, Henan, China
Z.B.Dai Professor
Zhengzhou institute of information science and technology, Zhengzhou, Henan, China

ABSTRACT

In the process of ocean development, the technology for maritime communication system is a hot research field, of
which information security is vital for the normal operation of the whole system, and that is also one of the difficulties
in the research of maritime communication system. In this paper, a kind of maritime communication cryptographic
SOC(system on chip) is introduced, and its compiler framework is put forward through analysis of working mode and
problems faced by compiler front end. Then, a loop unrolling factor calculating algorithm based on queue theory,
named UFBOQ (unrolling factor based on queue), is proposed to make parallel optimization in the compiler frontend
with consideration of the instruction memory capacity limit. Finally, the scalar replacement method is used to optimize
unrolled code to solve the memory access latency on the parallel computing efficiency, for continuous data storage
characteristics of cryptographic algorithm. The UFBOQ algorithm and scalar replacement prove effective and appropriate,
of which the effect achieves the linear speedup.

Keywords: Maritime Communication Encryption System, Cryptographic SOC, Compiler Frontend, Loop Unrolling

INTRODUCTION

As the attractiveness of marine resources and the awareness
of marine sovereignty, countries in the world are continuously
strengthening the development and utilization of sear,
which has led to the development of marine environmental
monitoring, deep ocean voyage and marine military. Any
ocean-related technology is inseparable from the data
communication, in this area a wealth of researches has been
implemented, such as underwater local communication
network[1][2], underwater laser communication system[3],
watercraft communication and navigation system[4].When
it comes to the field of data communication research, the
security transmission of data is one of the most important
research point[5], which is to protect the data transmission
process from being falsified or interception, and the end of
information security between transmitting terminals and
receiving terminals is the basic requirements, especially in
marine military communications. However, this is often
neglected in the construction of maritime communication
system, because the maritime communication system

research is more complex, which is characteristic of wireless
and remote transmission with mutable natural environment,
and it is always a cross of different research fields, so most of
the researches are focused on the stability and feasibility of the
maritime communication system, ignoring the information
security in the original design. Thus, it is necessary for us
to study it.

Encryption is the main way to realize information security,
and the maritime communication encryption system often
consists of encryption devices and transmission devices,
which is shown in Fig. 1.

Fig. 1. Structure of maritime communication encryption system

POLISH MARITIME RESEARCH, No S2/2017 61

With the development of integrated circuit, the encryption
device is able to be implemented by SOC technology,
which integrates GPP(general purpose processor) with
ASIC(application specific integrated circuit), FPGA(field
programmable gate array), ASIP(application specific
instruction processor) into one chip[6-8]. As for the diversity
of encryption algorithm in the maritime communication,
encryption device should be designed with GPP and ASIP
of SOC. The GPP takes the function of tasks control and the
ASIP is attributed to computationally intensive operation
such as encryption/decryption under the specific instructions.
This heterogeneous system indicates that programs coded
in the serial mode are not able to be executed, so a compiler
structure for this heterogeneous system is needed to partition
the source programs and map the codes to GPP and ASIP
correspondingly.

In this paper, we introduce framework and workflow
of one kind of maritime communication cryptographic
SOC, then a compilation framework is designed for that,
and a loop unrolling factor calculating algorithm based
on queue theory is proposed according to the encryption
algorithm features, which is exploited in the compiler front
end to enhance parallel. The scalar replacement method is
utilized to optimize the unrolled encryption codes to tackle
the latency of memory access.

THE MARITIME COMMUNICATION
CRYPTOGRAPHIC SOC

THE FRAMEWORK

GPP

Memory

Peripherals

DMA
Controller

I/O

Main Unit Cryptographic
Processing Unit

B
U

S

ASIP

General Register Files

Specific Register Files

CFU CFUCFUCFU

FIFO

General Register Files

Specific Register Files

CFU CFUCFUCFU

FIFO

Fig. 2 The framework of maritime communication cryptographic SOC

The framework of maritime communication cryptographic
SOC is in Fig. 2, it includes the main unit, the cryptographic
processing unit and peripherals. The main unit is mainly
composed of GPP and Memory, and the cryptographic
processing unit is mainly composed of the cryptographic
ASIP with the DMA(direct memory access) controller. The
main unit, the cryptographic processing unit and peripherals
send/receive data by data bus, and the cryptographic ASIP
also can transmit data through DMA.

The cryptographic ASIP is comprised of general register
files, specific register files and cryptographic CFUs(custom
function unit) which is designed according to the encryption
algorithm’s computing features, and each cryptographic CFU
operate after configurations in order to implement various
encryption algorithms. Multiple CFUs operate together to
do encryption in different bits length[9].

OPERATION PROCESS

The framework of the cryptographic SOC is a master-
slave structure, which requires two parts of the program,
that is, the executable program in the main unit and the
executable program of the cryptographic processing unit, and
the cryptographic processing unit needs conFig. the internal
function unit, then perform the cryptographic algorithm. The
operation process is illustrated in Fig. 3 including four steps:
1) The GPP reads the memory;
2) The GPP initiates the DMA, sending the configuration

information, the operation instruction and the operation
data are sent into the input FIFO of the cryptographic
ASIP;

3) The cryptographic ASIP disassemble the data in the
FIFO, extracting the configuration information, the
operation instruction and the plaintext data, then conFig.s
cryptographic CFU and executes the operation instruction;

4) The ciphertext data are sent into the output FIFO and
written back to the memory by the DMA controller via
the bus.
As can be seen from the framework and workflow of the

processor, there are two control flows in the whole process,
so the framework of the SOC and the situation about control
flow must taken into account in the design of the compiler.

Start

Data
disassembly

CFUs
configuration

Encryption
computing

Outputing
ciphertext

End

GPP initiates
DMA

If all data packet
are sent

Sending data
packets by

DMA

Waiting for data

YES

NO

Fig. 3. The workflow of maritime communication cryptographic SOC

POLISH MARITIME RESEARCH, No S2/201762

THE FRAMEWORK OF COMPILER
FOR THE MARITIME COMMUNICATION

CRYPTOGRAPHIC SOC
Because most encryption programs are coded in serial

mode based on the traditional processor framework, these
programs are not able to be implemented in the heterogeneous
framework SOC directly, and programming codes in

compilation framework has to be designed to parallel the
serial programs.

The compiler consists of the frontend and backend, and
the frontend handles works which are not connected with the
target machine, such as lexical analysis, syntax analysis; the
backend is mainly responsible for handling the intermediate
codes into executable code of the target machine According to

communication cryptographic SOC, the overall framework
of the compiler for it is shown in Fig. 4.

Source code

Codes partition

Compile link

Analysis and
optimization

backend

cryptographic
processing unit

Main unit codes

Source code

Codes partition

Compile link

Analysis and
poptimizationp

backend

cryptographic
processing unit

Main unit codes

Frontend

Executable
codes files

intermediate
codes

Dependence
analysis

Loop unrolling

Scalar
replacement

Parallelism
analysis

Fig. 4. The framework of compiler

The frontend of the compiler separate the program
source code into the main processing unit codes and the
cryptographic processing unit codes, which realize the
program source code distributed into different control
flows, and then maps and links codes by the backend. The
main unit processes the entire system function control, so
its detailed analysis is not discussed in this paper. The code
executed by the cryptographic processing unit needs to be
analyzed and optimized by the frontend of the compiler to
explore the parallelism of the code, which is important for

achieving the purpose of making full use of the multi CFUs
in the cryptographic processing unit and improving the
efficiency of the operation. After analysis and optimization,
The cryptographic processing unit codes are generated
into intermediate code, and then processed by the backend
to generate configuration information and operation
instructions, finally the compile and link procedure generate
executable codes files.

COMPILER FRONTEND OPTIMIZATION

ANALYSIS OF ENCRYPTION ALGORITHM FEATURES
AND THE FRONTEND TASK

In terms of the structural and application characteristics
of the encryption algorithm, the obvious feature is iterative
operations in both symmetric cipher and asymmetric cipher,
which is to achieve the purpose of Confusion and diffusion.
Especially in the block cipher, the block length and structure
is closely related to the iteration. This feature is based on the
idea of Shannon product password, so the iterative feature
is one of the important features of the encryption algorithm
application. Thus, there are the following problems in the
compiler frontend design:
1) There is not a widely applicable parallel programming

model, so the compiler frontend need to search the serial
codes parallelism. In terms of encryption algorithms
codes, there exist a large number of loops and the number
of iterations is big, which causes the complexity and
difficulties for loops optimization of the compiler frontend.
In order to search the parallelism of the serial program
codes, it is necessary to unroll loops, which can effectively
improve the instruction level parallelism of the program,
the locality of the register and the hierarchical structure of
the storage structure[10][11]. However, the degree of loop
unrolling is significant. The fully loop unrolling could
make instruction parallelism to the maximum extent, but it
will increase the pressure of the instruction RAM(random
access memory), and the parallelism of the program is
determined by the proportion of the serial part of the
code in the program according to Amdahl’s law, which
means insufficient loop unrolling will result in a decrease
in overall program performance. All considerations above
indicate that the determination of loop unrolling factor is
important and need overall consideration about the target
machine.

2) As for encryption algorithm application codes, there is
amount of memory access instructions in the loop, which
will consume more clock cycles than other instructions
and cause the computing unit, such as the CFUs, to use
some clock cycles waiting for data, interrupting calculation
temporarily and reducing the parallelism of the whole
program. So, the frontend is required to tackle the
problems.

POLISH MARITIME RESEARCH, No S2/2017 63

THE LOOP UNROLLING FACTOR CALCULATING
ALGORITHM BASED ON QUEUE THEORY

As for the key point of loop unrolling factor, if programs
are coded in serial mode, the instructions in the loop will be
executed line by line, which could be summarized as below:
i. every instructions of the codes will hold the computing

function unit when it is executed;
ii. different function instruction will consume certain amount

of clock cycle when it is executed;
iii. the unexecuted are waiting in line for executing

The three steps could be described form of formal
specification, define:

()
DEF

aei t the amount of executed instructions in time
segment (0,)t ;

()
DEF

sei t the speed of executing instructions in time
segment (0,)t ;

DEF
T = the time that all instructions are executed;

DEF
aet(t) = the average executing time for each instructions;

DEF
N(t) = the amount of all the instructions(including the
instructions being executed and the other instructions
waiting in line);

So formula (1) and (2) are as below:

DEF aei(t)sei(t) =
t

(1)

0
() ()

t

i
T aei i d i (2)

d(i) is the aei(t) instructions’ time consuming at the timing i,
formula (3) and (4) are as below:

Taet(t)=
aei(t)

(3)

TN(t) =
t

(4)

It can be concluded: () () ()N t sei t aet t , and on the
situation that the amount of instructions is limited, there is

lim ()
t

sei sei t and lim ()
t

aet aet t , [0,]t , so formula (5)
can be gotten:

N sei aet (5)

formula (5) indicates that the amount of instructions which
could be executed in the processor is equal to product of the
speed of executing instructions and the average executing
time for each instructions if the program is able to provide
N parallelism, the processor could achieve the best

instruction memory is limited and related with the unrolling
factor, the loop expansion factor must be constrained by the
of instructions’ number and volume.

Based on the analysis above, the UFBOQ (unrolling factor
based on queue) is proposed as formula(6), and the following
notations are adopted:
NL numbers of instruction in the loop
NI numbers of iteration
N the instruction throughput
M the delay/average executing time
R the restriction of total instructions number define by

the programmer
UF the unrolling factor

UF = Min(NI,R/NL,N*M) (6)

If UF = NI, the loop is fully unroll, and if UF = N*M,
N*M ≠ NI, it means the loop is unrolled according to the
degree of parallelism.

After the loop unrolling, the original loop boundary
is broken which could enlarge the program basic block.
The same operation code in a loop can be vectorized or
parallelized to realize the parallel execution of the small
bit width operation to achieve the large bit width operation
effect. For example, many block cipher operations have a non-
linear S-box operation, which determines the security of the
cryptographic algorithm. It can be regarded as a mapping
of fixed-length data to another fixed-length data, which is
often less than the packet length. Because there is no data
dependency between the S-box operations within the packet
length range, it can be executed in parallel after the loop
unrolling to improve the operation bit width.

SCALAR REPLACEMENT

There is usually a certain number of array reading and
writing operations in the encryption algorithm codes, and
the cryptographic ASIP is the slave unit in the system, which
means the ASIP need to get plaintext data from the bus. As for
the ASIP, the bus can be regarded as an external storage device,
so the memory access instructions can cause communication
cost to reduce the computational efficiency. And there is data
reuse in the round operation, so the best way is put the last
round operation data into the register, but data reading and
writing operation code is usually compiled as access to the
external memory. For above considerations, it is necessary to
optimize the memory access codes in unrolled loop.

The scalar replacement technology is exploited to tackle
the problem. After the loop unrolling, the array reading

POLISH MARITIME RESEARCH, No S2/201764

instructions are moved out then put in front of the loop body,
and the array writing back instructions are moved out then
put after the loop body. Finally, array elements are replaced
by scalars. This scalar replacement technology enables the
compiler to allocate registers to data which need to be reused,
instead of reading/writing data to memory by bus repeatly,
and this optimization achieves the separation of calculation
process and data reading/writing process. After the scalar
replacement optimization, when the ASIP read the external
plaintext data from the bus, the data are able to be input to the
buffer, and then input to the general register files. When the
encryption are finished and ciphertext data are to be written
back to the memory, the data are written to the output buffer,
and then to the external memory. In this mode, the plaintext
data and the encryption data are able to be transferred to
correspond FIFO by DMA mode. The codes in Fig. 5 is the
example about S-box operation.

for(c=0; c<N; c++)
{
 state[c] = Sbox(state[c]);
}

(a) S-box operation codes

for(c=0; c<N; c=c+UFL)
{
 Parallel do
 state[c] = Sbox(state[c]);
 state[c+1] = Sbox(state[c+1]);

 state[c+UFL] = Sbox(state[c+UFL]);
 Parallel
}

= Sb

L]

= Sb

L]

= Sb

L]

(b) Codes after loop unrolling

X0 = state[0]

XN = state[N]
for(c=0; c<N; c=c+UFL)
{
 Parallel do
 XC = Sbox(XC);
 XC+1 = Sbox(XC);

 XC+UFL = Sbox(XC+UFL);
 Parallel
}
state[0] = X0;

state[N] = XN ;

stastasta

]

N]

]

N]

]

N]

L =LL

(c) Codes after scalar replacement

Fig. 5. Optimization for S-box operation codes

In Fig.5(a), the original S-box operation codes in the loop
contain once external data memory reading, once table
handling and once data writing to external memory, and
the loop body will repeat N times.

After the loop unrolling in Fig. 4 (b), the number of table
handling operation is still N times, but can be executed in
parallel by UF threads in N/UF iterations which is less time
consuming. In Fig.4 (c), the 2N times the external storage
device reading/writing operations can be done to the DMA
controller, and the ASIP only runs table handling operation,
in this way it solves the latency of memory access to external
storage device time consumption which reduces parallel
computing effect. Because the plaintext data and the ciphertext
data of the cryptographic operation are stored serially in the
memory, it is very suitable for the DMA operation. In the
optimization of scalar replacement, the volume of the buffer
unit and register need to be taken in consideration to avoid
data overflow.

EXPERIMENTS AND PERFORMANCE

The experiment is implemented based on the SOC which
is manufactured in 65nm, and the ASIP’s throughput is
1 instruction/clock, the latency is 3 clock for each instruction.
The encryption algorithm DES AES-128 IDEA SMS4 are
utilized in the experiment, and the performance comparison
between non-optimized compilation and optimized
compilation is shown in table 1.
Tab. 1. Performance comparison

Encryption
algorithm

Clocks under
non-optimized

compilation

Clocks under
optimized

compilation
speedup

AES-128 268 105 2.55

DES 695 241 2.88

IDEA 168 62 2.7

SMS4 5632 2063 2.73

According to the experimental results, it can be seen that
the UFBOQ algorithm and scalar replacement prove effective
and appropriate, of which the effect nearly achieves the linear
speedup.

CONCLUSIONS

In this paper, a kind of cryptographic SOC for maritime
communication encryption system is introduced. For solving
the problems of the heterogeneous SOC, a compiler framework
for it is proposed. What is more, for the problem of parallelism
and latency of memory access operation, the optimization of
UFBOQ algorithm and scalar replacement is presented based
on the compiler framework and the encryption algorithm
codes feature. The optimization searches the parallelism of the
serial codes and tackle the latency caused by memory access.

POLISH MARITIME RESEARCH, No S2/2017 65

The experiment is implemented with 4 classic encryption
algorithms, and the results verifies the validity of the frontend
optimization function of the compilation system.

BIBLIOGRAPHY

1. RWL Coutinho, A Boukerche LFM Vieira, AAF
Loureiro. A novel void node recovery paradigm for long-
term underwater sensor networks. Ad Hoc Networks, Vol.
34, No.C , pp.144-156, 2015.

2. MR Bharamagoudra, SKS Manvi. Deployment
Scheme for Enhancing Coverage and Connectivity in
Underwater Acoustic Sensor Networks. Wireless Personal
Communications, Vol.89, No.4, pp.1265-1293,2016.

3. J Xu, A Lin, X Yu et al. Underwater Laser Communication
Using an OFDM-Modulated 520-nm Laser Diode. IEEE
Photonics Technology Letters,28 (20),pp.2133 - 2136, 2016.

4. C Specht. Accuracy and coverage of the modernized Polish
Maritime differential GPS system.Advances in Space
Research, Vol.47,No.2, pp.221-228,2011 .

5. G Dini AL Duca. A Secure Communication Suite
for Underwater Acoustic Sensor Networks.Sensors,
Vol.12,No.11,pp. 15133-15158,2012.

6. K. akdemir, M. Dixon, et al. Breakthrough AES
performance with Intel AES new Instructions. Whilte
paper, June, 2010

7. J. burk, J. Mcdonald, et al. Architecture support for fast
symmetric-key cryptography. Acm Sigplan Notices, Vol.35,
No.11:178-189, 2000.

8. Wang Y, Ha Y. FPGA based 40.9-Gbit/s Masked AES with
Area optimization for storage area network. Circuits &
Systems II Express Briefs IEEE Tranaction on , Vol. 60,
No.1, pp.36-40, 2013.

9.
Block Cryptographic Processor Based on VLIW

pp. 91-98, 2016

10. Gao Fei Li hongyan, Zhang Yongfu. Research on cipher
coprocessor instruction level parallelism compiler,
Application research of computers, Vol. 27, No.5,
pp. 1633-1637,2010.

11. DAVID F. BACON, SUSAN L. GRAHAM, AND OLIVER
J. SHARP. Compiler transformations for high-performance
computing, Acm Computing Surveys, Vol. 26, No.4,
pp. 345-420, 1994.

CONTACT WITH AUTHOR

Li Sheng

e-mail: linirvana@126.com
Zhengzhou Institute of Information

Science and Technology
Zhengzhou
CHINA

