Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
DOI
Warianty tytułu
Języki publikacji
Abstrakty
This paper presents the results of a one-year field study on the monsoonal reflective response of the rubble mound breakwater (RMB) of Chabahar Bay, located on the northern coast of the Gulf of Oman, Iran. Measurements show that, in general, the correlation between the reflection coefficient and Iribarren number during the winter monsoon period is more remarkable than that of the summer monsoon period. The difference in wave reflection behavior during monsoonal periods is mainly due to the energy proportion of incoming sea and swell waves. Various characteristic wave periods by means of power- and hyperbolic-law prediction functions are explored to enhance the wave reflection prediction, highlighting the significant performance of negative-moment spectral periods Tm−1 and Tm−2 compared with peak and mean spectral periods. Statistical comparison of the performance of Tm−1 and Tm−2 shows that Tm−2 considerably improves the prediction accuracy for moderated energy waves with bimodal sea and swell climates originating from different directions in the winter monsoon and pre-summer monsoon months. However, the prediction improvement is insignificant for unimodal energetic waves observed during the summer monsoon months. Generally, using Tm−2 increases the accuracy of the preexisting equations in predicting the observations of this study.
Czasopismo
Rocznik
Tom
Strony
art. no. 66306
Opis fizyczny
Bibliogr. 109 poz., rys., wykr.
Twórcy
autor
- Iranian National Institute for Oceanography and Atmospheric Sciences (INIOAS), Tehran, Iran
autor
- Iranian National Institute for Oceanography and Atmospheric Sciences (INIOAS), Tehran, Iran
autor
- Iranian National Institute for Oceanography and Atmospheric Sciences (INIOAS), Tehran, Iran
Bibliografia
- 1. Aboobacker, V. M., Rashmi, R., Vethamony, P., Menon, H.B., 2011. On the dominance of pre-existing swells over wind seas along the west coast of India, Cont. Shelf. Res., 31(16), 1701-1712. https://doi.org/10.1016/j.csr.2011.07.010
- 2. Aboobacker, V.M., Shanas, P.R., 2018. The climatology of shamals in the Arabian Sea – Part 1: Surface winds, Int. J. Climatol. 38(12), 4405-4416. https://doi.org/10.1002/joc.5711
- 3. Altomare, C., Suzuki, T., Verwaest, T., 2020. Influence of directional spreading on wave overtopping of sea dikes with gentle and shallow foreshores. Coast. Eng. 157, 103654. https://doi.org/10.1016/j.coastaleng.2020.103654
- 4. Amrutha, M.M., Sanil Kumar, V., Sharma, S., Singh, J., Gowthaman, R., Kankara, R.S., 2015. Characteristics of shallow water waves off the central west coast of India before, during and after the onset of the Indian summer monsoon. Ocean Eng. 107, 259-270. https://doi.org/10.1016/j.oceaneng.2015.07.061
- 5. Andersen, T.L., 2006. Hydraulic Response of Rubble Mound Breakwaters Scale Effects – Berm Breakwaters. PhD Thesis, Hydraulics and Coastal Engineering Laboratory, Department of Civil Engineering, Aalborg University. Aniel-Quiroga, Í., Vidal, C., Lara, J.L., González, M., 2019. Pressures on a rubble-mound breakwater crown-wall for tsunami impact. Coast. Eng. 152, 103522. https://doi.org/10.1016/j.coastaleng.2019.103522
- 6. Anoop, T.R., Shanas, P.R., Aboobacker, V.M., Kumar, V.S., Nair, L.S., Prasad, R., Reji, S., 2020. On the generation and propagation of Makran swells in the Arabian Sea. Int. J. Climatol. 40(1), 585-593. https://doi.org/10.1002/joc.6192
- 7. Barak, M.S., Kaliraman, V., 2019. Reflection and transmission of elastic waves from an imperfect boundary between micropolar elastic solid half space and fluid saturated porous solid half space. Mech. Adv. Mater. Struc. 26(14), 1226-1233. https://doi.org/10.1080/15376494.2018.1432795
- 8. Barak, M.S., Kumari, M., Kumar, M., 2018. Effect of local fluid flow on the propagation of plane waves at an interface of water/double-porosity solid with underlying uniform elastic solid. Ocean Eng. 147, 195-205. https://doi.org/10.1016/j.oceaneng.2017.10.030
- 9. Battjes, J.A., 1974. Surf Similarity. 14th ASCE Coast. Eng. Conf., Copenhagen, Denmark.
- 10. Bourget, J., Zaragosi, S., Ellouz-Zimmermann, S., Ducassou, E., Prins, M. A., Garlan, T., Lanfumey, V., Schneider, J. L., Rouillard, P., and Giraudeau, J., 2010. Highstand vs. lowstand turbidite system growth in the Makran active margin: Imprints of high-frequency external controls on sediment delivery mechanisms to deep water systems. Mar. Geol. 274(1-4), 187-208. https://doi.org/10.1016/j.margeo.2010.04.005
- 11. Buccino, M., Calabrese, M., 2007. Conceptual Approach for Prediction of Wave Transmission at Low-Crested Breakwaters. J. Waterw. Port Coast. Ocean Eng. 133(3), 213-224. https://doi.org/doi:10.1061/(ASCE)0733-950X(2007)133:3(213)
- 12. Bruun, P., Gunbak, A.R., 1976. New Design Principles for Rubble Mound Structures. Coast. Eng. Proc. 1(15), 141. https://doi.org/10.9753/icce.v15.141
- 13. Calhoun, R.J., 1971. Field study of wave transmission through a rubble-mound breakwater. Master Thesis, Naval Postgraduate School, Monterey California, Publ. No. AD0721552. https://apps.dtic.mil/sti/citations/AD0721552
- 14. Cao, D., Tan, W., Yuan, J., 2022. Assessment of wave overtopping risk for pedestrian visiting the crest area of coastal structure. Appl. Ocean Res. 120, 102985. https://doi.org/10.1016/j.apor.2021.102985
- 15. Chaichitehrani, N., Allahdadi, M.N., 2018. Overview of wind climatology for the Gulf of Oman and the northern Arabian Sea. Am. J. Fluid Dynam. 8, 1-9.
- 16. Dattatri, J., Raman, H., Shankar, N.J., 1978. Performance Characteristics of Submerged Breakwaters. Coast. Eng. Proc., Hamburg, Germany.
- 17. Davidson, M.A., Bird, P.A.D., Bullock, G.N., Huntley, D.A., 1996. A new non-dimensional number for the analysis of wave reflection from rubble mound breakwaters. Coast. Eng. 28(1-4), 93-120. https://doi.org/10.1016/0378-3839(96)00012-9
- 18. Dekker, J., Caires, S., Van Gent, M.R.A., 2007. Reflection of non-standard wave spectra by sloping structures. 5th Coastal Structures International Conference, Venice, Italy.
- 19. Dı́az-Carrasco, P., 2023. Hydraulic performance analysis for homogeneous mound breakwaters: Application of dimensional analysis and a new experimental technique. Ocean. Eng. 286(Pt. 2), 115598. https://doi.org/10.1016/J.OCEANENG.2023.115598
- 20. Dı́az-Carrasco, P., Eldrup, M.R., Lykke Andersen, T., 2021. Advance in wave reflection estimation for rubble mound breakwaters: The importance of the relative water depth. Coast. Eng. 168, 103921. https://doi.org/10.1016/j.coastaleng.2021.103921
- 21. Dong, Y., Zheng, Z., Ma, Y., Gao, J., Ma, X., Dong, G., 2023. Numerical investigation on the mitigation of harbor oscillations by periodic undulating topography. Ocean Eng. 279, 114580.
- 22. Düing, W., 1970. The Monsoon Regime of the Currents in the Indian Ocean. East-West Center Press, Honolulu, 68 pp.
- 23. Eyhavand-Koohzadi, A., Badiei, P., 2021. Laboratory experiments on time-space conversion of wind waves in deep water. Appl. Ocean. Res. 111, 102656. https://doi.org/https://doi.org/10.1016/j.apor.2021.102656
- 24. Eyhavand-Koohzadi, A., Badiei, P., 2022. Experimental study on the growth and conversion of duration- and fetchlimited wind waves in water of finite depth. Ocean. Eng. 266, 113020. https://doi.org/10.1016/j.oceaneng.2022.113020
- 25. Galiatsatou, P., Makris, C., Prinos, P., 2018. Optimized Reliability Based Upgrading of Rubble Mound Breakwaters in a Changing Climate. J. Mar. Sci. Eng. 6(3), 92. https://www.mdpi.com/2077-1312/6/3/92
- 26. Gao, J., Zhou, X., Zang, J., Chen, Q., Zhou, L., 2018. Influence of offshore fringing reefs on infragravity period oscillations within a harbor. Ocean Eng. 158, 286-298.
- 27. Gao, J., Zhou, X., Zhou, L., Zang, J., Chen, H., 2019. Numerical investigation on effects of fringing reefs on lowfrequency oscillations within a harbor. Ocean Eng. 172, 86-95.
- 28. Gao, J., Ma, X., Dong, G., Chen, H., Liu, Q., Zang, J., 2021. Investigation on the effects of Bragg reflection on harbor oscillations. Coast. Eng. 170, 103977. https://doi.org/https://doi.org/10.1016/j.coastaleng.2021.103977
- 29. Gao, J., Shi, H., Zang, J., Liu, Y., 2023. Mechanism analysis on the mitigation of harbor resonance by periodic undulating topography. Ocean Eng. 281, 114923. https://doi.org/https://doi.org/10.1016/j.oceaneng.2023.114923
- 30. Gao, J., Hou, L., Liu, Y., Shi, H., 2024. Influences of bragg reflection on harbor resonance triggered by irregular wave groups. Ocean Eng. 305, 117941.
- 31. Goda, Y., 2010. Random seas and design of maritime structures. Adv. Ser. Ocean Eng. Vol. 33, World Sci., 732 pp.
- 32. Haider, R., Ali, S., Hoffmann, G., Reicherter, K., 2023. A multi-proxy approach to assess tsunami hazard with a preliminary risk assessment: A case study of the Makran Coast, Pakistan. Mar. Geol. 459, 107032. https://doi.org/10.1016/j.margeo.2023.107032
- 33. Han, X., Jiang, Y., Dong, S., 2022. Wave forces on crown wall of rubble mound breakwater under swell waves. Ocean. Eng. 259, 111911. https://doi.org/10.1016/j.oceaneng.2022.111911
- 34. Harry, M., Zhang, H., Lemckert, C., Colleter, G., Blenkinsopp, C., 2018. Observation of surf zone wave transformation using LiDAR. Appl. Ocean. Res. 78, 88-98. https://doi.org/10.1016/j.apor.2018.05.015
- 35. Hofland, B., Chen, X., Altomare, C., Oosterlo, P., 2017. Prediction formula for the spectral wave period Tm-1,0 on mildly sloping shallow foreshores. Coast. Eng. 123, 21-28. https://doi.org/10.1016/j.coastaleng.2017.02.005
- 36. Iglesias, G., Rabuñal, J., Losada, M.A., Pachón, H., Castro, A., Carballo, R., 2008. A virtual laboratory for stability tests of rubble-mound breakwaters. Ocean Eng. 35(11-12), 1113-1120. https://doi.org/10.1016/j.oceaneng.2008.04.014
- 37. Irı́as Mata, M., Van Gent, M.R.A., 2023. Numerical modelling of wave overtopping discharges at rubble mound breakwaters using OpenFOAM®. Coast. Eng. 181, 104274. https://doi.org/10.1016/j.coastaleng.2022.104274
- 38. Kamphuis, J.W., 2010. Introduction to coastal engineering and management. Adv. Ser. Ocean Eng. Vol. 30, World Sci., 564 pp.
- 39. Karnan, C., Gautham, S., 2023. Seasonal enhancement of phytoplankton biomass in the southern tropical Indian Ocean: Significance of meteorological and oceanography parameters. Oceanologia 66(2), 196-219. https://doi.org/10.1016/j.oceano.2023.10.003
- 40. Kober, F., Zeilinger, G., Ivy-Ochs, S., Dolati, A., Smit, J., and Kubik, P. W., 2013. Climatic and tectonic control on fluvial and alluvial fan sequence formation in the Central Makran Range, SE-Iran. Global Planet. Change 111, 133-149. https://doi.org/10.1016/j.gloplacha.2013.09.003
- 41. Koley, S., Panduranga, K., Almashan, N., Neelamani, S., and Al-Ragum, A., 2020. Numerical and experimental modeling of water wave interaction with rubble mound offshore porous breakwaters. Ocean. Eng. 218, 108218. https://doi.org/10.1016/j.oceaneng.2020.108218
- 42. Kor, K., Ershadifar, H., Ghazilou, A., and Koochaknejad, E., 2021. Seasonal variations, potential bioavailability, and ecological risk of phosphorus species in the coastal sediments of the Makran. Mar. Pollut. Bull. 173, 113125. https://doi.org/10.1016/j.marpolbul.2021.113125
- 43. Koutrouveli, T.I., Dimas, A.A., 2020. Wave and hydrodynamic processes in the vicinity of a rubble-mound, permeable, zero-freeboard break water. J. Mar. Sci. Eng. 8(3), 206. https://doi.org/10.3390/jmse8030206
- 44. Krishna, P.S., Aboobacker, V.M., Ramesh, M., Nair, L.S., 2023. Remotely induced storm effects on the coastal flooding along the southwest coast of India. Oceanologia 65(3), 503-516. https://doi.org/10.1016/j.oceano.2023.03.003
- 45. Kumar, R., Barak, M., 2007. Wave propagation in liquidsaturated porous solid with micropolar elastic skelton at boundary surface. Appl. Math. Mech. 28(3), 337-349. https://doi.org/10.1007/s10483-007-0307-z
- 46. Kumar, R., Gupta, V., Pathania, V., Kumar, R., Barak, M.S., 2023. Analysis of Waves at Boundary Surfaces at Distinct Media with Nonlocal Dual-Phase-Lag. Proceedings of the National Academy of Sciences, India Section A: Physical Sciences, 93(4), 573-585. https://doi.org/10.1007/s40010-023-00850-y
- 47. Lahiri, S.P., Vissa, N.K., 2022. Assessment of Indian Ocean upwelling changes and its relationship with the Indian monsoon. Global Plant. Change 208, 103729. https://doi.org/https://doi.org/10.1016/j.gloplacha.2021.103729
- 48. Lee, J.I., Shin, S., 2014. Experimental study on the wave reflection of partially perforated wall caissons with single and double chambers. Ocean. Eng. 91, 1-10. https://doi.org/10.1016/j.oceaneng.2014.08.008
- 49. Li, A.J., Liu, Y., Fang, H., Liu, X., 2022. Wave scattering by a periodic array of porous breakwaters. Appl. Ocean Res. 127, 103328. https://doi.org/10.1016/j.apor.2022.103328
- 50. Li, D., Anis, A., Al Senafi, F., 2020. Physical response of the Northern Arabian Gulf to winter Shamals. J. Marine Syst. 203, 103280. https://doi.org/10.1016/j.jmarsys.2019.103280
- 51. Liu, Y., Li, S., Chen, S., Hu, C., Fan, Z., Jin, R., 2020. Random wave overtopping of vertical seawalls on coral reefs. Appl. Ocean Res. 100, 102166. https://doi.org/https://doi.org/10.1016/j.apor.2020.102166
- 52. Liu, Y., Li, S., Liao, Z., Liu, K., 2021. Physical and numerical modeling of random wave transformation and overtopping on reef topography. Ocean Eng. 220, 108390. https://doi.org/https://doi.org/10.1016/j.oceaneng.2020.108390
- 53. Losada, M.A., Giménez-Curto, L.A., 1980. Flow characteristics on rough, permeable slopes under wave action. Coast. Eng. 4, 187-206. https://doi.org/10.1016/0378-3839(80)90019-8
- 54. Lykke Andersen, T., Burcharth, H.F., 2009. Three-dimensional investigations of wave overtopping on rubble mound structures. Coast. Eng. 56(2), 180-189. https://doi.org/10.1016/j.coastaleng.2008.03.007
- 55. Mahmoudof, S.M., Azizpour, J., 2020. Field observation of wave reflection from plunging cliff coasts of Chabahar. Appl. Ocean. Res. 95, 102029-102029. https://doi.org/10.1016/J.APOR.2019.102029
- 56. Mahmoudof, S.M., Hajivalie, F., 2021. Experimental study of hydraulic response of smooth submerged breakwaters to irregular waves. Oceanologia 63(4), 448-462. https://doi.org/10.1016/j.oceano.2021.05.002
- 57. Mahmoudof, S.M., Azizpour, J., Eyhavand-Koohzadi, A., 2021a. Observation of infragravity wave processes near the coastal cliffs of Chabahar (Gulf of Oman). Estuar. Coast. Shelf Sci. 251, 107226. https://doi.org/10.1016/j.ecss.2021.107226
- 58. Mahmoudof, S.M., Eyhavand-Koohzadi, A., Bagheri, M., 2021b. Field study of wave reflection from permeable rubble mound breakwater of Chabahar Port. Appl. Ocean Res. 114, 102786-102786. https://doi.org/10.1016/J.APOR.2021.102786
- 59. Mahmoudof, S.M., Siadatmousavi, S.M., Seyedalipour, S.A., 2021c. Experimental study of bound triad interactions across a dissipative surf zone under different wave breaking conditions. Ocean Eng. 235, 109427. https://doi.org/10.1016/j.oceaneng.2021.109427
- 60. Mahmoudof, S.M., Takami, M.L., 2022. Numerical study of coastal wave profiles at the sandy beaches of Nowshahr (Southern Caspian Sea). Oceanologia 64(3), 457-472. https://doi.org/https://doi.org/10.1016/j.oceano.2022.03.001
- 61. Mahmoudof, S.M., Eyhavand-Koohzadi, A., Kazeminezhad, M.H., 2023. Field investigation of spectral wave period 𝑇Tm−1,0 on shallow and very shallow foreshores of the southern Caspian Sea. Coast. Eng. 181, 104277. https://doi.org/10.1016/j.coastaleng.2023.104277
- 62. Masselink, G., 1998. Field investigation of wave propagation over a bar and the consequent generation of secondary waves. Coast. Eng. 33(1), 1-9. https://doi.org/10.1016/S0378-3839(97)00032-X
- 63. Morrison, J.M., Codispoti, L.A., Gaurin, S., Jones, B., Manghnani, V., Zheng, Z., 1998. Seasonal variation of hydrographic and nutrient fields during the US JGOFS Arabian Sea Process Study. Deep-Sea Res. Pt. II 45(10-11), 2053-2101. https://doi.org/10.1016/S0967- 0645(98)00063-0
- 64. Mostaghiman, A., Moghim, M.N., 2022. An experimental study of partly/hardly reshaping mass-armored doubleberm breakwaters. Ocean Eng. 243, 110258. https://doi.org/10.1016/j.oceaneng.2021.110258
- 65. Muttray, M., Oumeraci, H., Oever, E.T., 2006. Wave reflection and wave run-up at rubble mound breakwaters. 30th International Conference, San Diego, California, USA. Myrhaug, D., 2020. Some probabilistic properties of surf parameter. Oceanologia 62(3), 395-401. https://doi.org/10.1016/j.oceano.2020.02.003
- 66. Nassar, K., Mahmod, W.E., Tawfik, A., Rageh, O., Negm, A., and Fath, H., 2018. Developing empirical formulas for assessing the hydrodynamic behaviour of serrated and slotted seawalls. Ocean Eng. 159, 388-409. https://doi.org/10.1016/j.oceaneng.2018.04.048
- 67. Neelamani, S., Al-Salem, K., Rakha, K., 2007. Extreme waves for Kuwaiti territorial waters. Ocean Eng. 34(10), 1496-1504. https://doi.org/10.1016/j.oceaneng.2006.08.013
- 68. Nguyen, N.M., Van, D.D., Le, D.T., Cong, S.D., Pham, N.T., Nguyen, Q., Tran, B., Wright, D.P., Tanim, A.H., Anh, D.T., 2022. Wave reduction efficiency for three classes of breakwaters on the coastal Mekong Delta. Appl. Ocean. Res. 129, 103362. https://doi.org/10.1016/j.apor.2022.103362
- 69. Numata, A., 1976. Laboratory Formulation For Transmission And Reflection At Permeable Breakwaters Of Artificial Blocks. Coast. Eng. Japan 19(1), 47-58. https://doi.org/10.1080/05785634.1976.11924216
- 70. Oumeraci, H., Partenscky, H.W., 1990. Wave-Induced Pore Pressure in Rubble Mound Breakwaters. 22nd International Conference on Coastal Engineering, Delft, The Netherlands, July 2-6, 1990, 1334-1347. https://doi.org/doi:10.1061/9780872627765.102
- 71. Peihong, Z., Dapeng, S., Hao, W., Yucheng, L., 2021. Theoretical investigation of wave reflection from partially perforated caisson sitting on a rubble mound foundation. Ocean Eng. 235, 109085. https://doi.org/10.1016/j.oceaneng.2021.109085
- 72. Pedersen, T., Lohrmann, A., 2004. Possibilities and limitations of acoustic surface tracking. Oceans ’04 MTS/IEEE Techno-Ocean ’04 (IEEE Cat. No.04CH37600), Kobe, Japan.
- 73. Pedersen, T., Siegel, E., Wood, J., 2007. Directional Wave Measurements from a Subsurface Buoy with an Acoustic Wave and Current Profiler (AWAC). Oceans 2007, Vancouver, BC, Canada.
- 74. Postma, G.M., 1989. Wave reflection from rock slopes under random wave attack. Master thesis, University of Technology Delft. http://resolver.tudelft.nl/uuid:4c21a913-a78b-40d2-b690-a0184683434b
- 75. Pratola, L., Rinaldi, A., Molfetta, M.G., Bruno, M.F., Pasquali, D., Dentale, F., Mossa, M., 2021. Investigation on the reflection coefficient for seawalls protected by a rubble mound structure. J. Mar. Sci. Eng. 9, 937. https://doi.org/10.3390/jmse9090937
- 76. Prizomwala, S.P., Vedpathak, C., Tandon, A., Das, A., Makwana, N., Joshi, N., 2022. Geological footprints of the 1945 Makran tsunami from the west coast of India. Mar. Geol. 446(106773). https://doi.org/10.1016/j.margeo.2022.106773
- 77. Radfar, S., Shafieefar, M., Akbari, H., Galiatsatou, P.A., Mazyak, A.R., 2021. Design of a rubble mound breakwater under the combined effect of wave heights and water levels, under present and future climate conditions. Appl. Ocean Res. 112, 102711. https://doi.org/10.1016/j.apor.2021.102711
- 78. Requejo, S., Vidal, C., and Losada, I.J., 2002. Modelling of wave loads and hydraulic performance of vertical permeable structures. Coast. Eng. 46(4), 249-276. https://doi.org/10.1016/S0378-3839(02)00072-8
- 79. Saket, A., Etemad-Shahidi, A., 2012. Wave energy potential along the northern coasts of the Gulf of Oman, Iran. Renew. Energ. 40(1), 90-97. https://doi.org/10.1016/j.renene.2011.09.024
- 80. Salauddin, M., Pearson, J.M., 2020. Laboratory investigation of overtopping at a sloping structure with permeable shingle foreshore. Ocean. Eng. 197, 106866. https://doi.org/10.1016/j.oceaneng.2019.106866
- 81. Samiksha, S.V., Vinodkumar, K., Vethamony, P., 2014. Impact of shamal winds and swells on the coastal currents along the west coast of India. Indian J. Geo.-Mar. Sci. 43(7), 1236-1240.
- 82. Sanil Kumar, V., Singh, J., Pednekar, P., Gowthaman, R., 2011. Waves in the nearshore waters of northern Arabian Sea during the summer monsoon. Ocean. Eng. 38(2-3), 382-388. https://doi.org/https://doi.org/10.1016/j.oceaneng.2010.11.009
- 83. Seelig, W.N., Ahrens, J.P., 1981. Estimation of wave reflection and energy dissipation coefficients for beaches, revetments, and breakwaters. U.S. Army Coastal Engineering Research Center Technical Paper, 81-1.
- 84. Shamji, V.R., 2021. Beach classifications in response to southwest monsoon waves: A case study. Indian J. Geo.-Mar. Sci. 50, 14-20. http://nopr.niscpr.res.in/handle/123456789/56099
- 85. Shankar, D., Vinayachandran, P.N., Unnikrishnan, A.S., 2002. The monsoon currents in the north Indian Ocean. Prog. Oceanogr. 52(1), 63-120. https://doi.org/https://doi.org/10.1016/S0079-6611(02)00024-1
- 86. Sierra, J.P., 2019. Economic Impact of Overtopping and Adaptation Measures in Catalan Ports Due to Sea Level Rise. Water 11(7), 1440. https://www.mdpi.com/2073-4441/11/7/1440
- 87. Sinha, M., Jha, S., Chakraborty, P., 2020. Indian Ocean wind speed variability and global teleconnection patterns. Oceanologia 62(2), 126-138. https://doi.org/10.1016/j.oceano.2019.10.002
- 88. Smith, S. L., Criales, M.M., Schack, C., 2020. The large-bodied copepods off Masirah Island, Oman: An investigation of Southwest Monsoon onset and die-off. J. Marine Syst. 204, 103289. https://doi.org/https://doi.org/10.1016/j.jmarsys.2019.103289
- 89. Smitha, A., Sankar, S., Satheesan, K., 2023. Impact of tropical Indian Ocean warming on the surface phytoplankton biomass at two significant coastal upwelling zones in the Arabian Sea. Dynam. Atmos. Oceans 104, 101401. https://doi.org/https://doi.org/10.1016/j.dynatmoce.2023.101401
- 90. Sollitt, C.K., Cross, R.H., 1972. Wave Transmission through Permeable Breakwaters. 13th Conference on Coastal Engineering, Vancouver, Canada.
- 91. Sreelakshmi, S., Bhaskaran, P.K., 2020. Wind-generated wave climate variability in the Indian Ocean using ERA- 5 dataset. Ocean Eng. 209, 107486. https://doi.org/10.1016/j.oceaneng.2020.107486
- 92. Stagnitti, M., Lara, J.L., Musumeci, R.E., Foti, E., 2023. Numerical Modeling of Wave Overtopping of Damaged And Upgraded Rubble-Mound Breakwaters. Ocean Eng. 280, 114798. https://doi.org/https://doi.org/10.1016/j.oceaneng.2023.114798
- 93. Sulisz, W., McDougal, W.G., Sollitt, C.K., 1989. Wave interaction with rubble toe protection. Ocean Eng. 16(5-6), 463-473. https://doi.org/10.1016/0029-8018(89)90047-4
- 94. Uścinowicz, G., Uścinowicz, S., Szarafin, T., Maszloch, E., Wirkus, K., 2023. Rapid coastal erosion, its dynamics and cause–an erosional hot spot on the southern Baltic Sea coast. Oceanologia 66(2), 250-266.https://doi.org/10.1016/j.oceano.2023.12.002
- 95. Van der Meer, J.W., 1992. Conceptual Design of Rubble Mound Breakwaters. Design and Reliability of Coastal Structures, 23rd ICCE in Venice, Venice, Italy.
- 96. Van der Meer, J.W., 1997. Golfoploop en golfoverslag bij dijken. Hydraulic Engineering Reports, H2458/H3051, Delft Hydraulics, The Netherlands.
- 97. Van der Meer, J.W., Briganti, R., Zanuttigh, B., Wang, B., 2005. Wave transmission and reflection at low-crested structures: Design formulae, oblique wave attack and spectral change. Coast. Eng. 52(10-11), 915-929. https://doi.org/10.1016/j.coastaleng.2005.09.005
- 98. Van der Meer, J.W., Daemen, I.F.R., 1994. Stability and Wave Transmission at Low-Crested Rubble-Mound Structures. J. Waterw. Port Coast. Ocean Eng. 120(1). https://doi.org/10.1061/(asce)0733-950x(1994)120:1(1)
- 99. Van Gent, M.R.A., 1999. Wave run-up and wave overtopping for double peaked wave energy spectra. Hydraulic Engineering Reports, No. H3351, University of Technology, Delft, The Netherlands.
- 100. Van Gent, M.R.A., 2001. Wave Runup on Dikes with Shallow Foreshores. J. Waterw. Port Coast. Ocean Eng. 127(5), 254-262. https://doi.org/doi:10.1061/(ASCE)0733-950X(2001)127:5(254)
- 101. Van Gent, M.R.A., Buis, L., Van den Bos, J.P., Wüthrich, D., 2023. Wave transmission at submerged coastal structures and artificial reefs. Coast. Eng. 184, 104344. https://doi.org/10.1016/j.coastaleng.2023.104344
- 102. Vinod Kumar, K., Seemanth, M., Vethamony, P., Aboobacker, V.M., 2014. On the spatial structure and time evolution of shamal winds over the Arabian Sea - a case study through numerical modelling. Int. J. Climatol. 34(6), 2122-2128. https://doi.org/10.1002/joc.3819
- 103. Wang, Y., Jiang, D., Li, Y., 2022. Numerical research of harbor oscillation influenced by vegetation. Ocean Eng. 244, 110255.
- 104. Wilson, K.W., Cross, R.H., 1972. Scale Effects In Rubble- Mound Breakwaters. 13th Conference on Coastal Engineering, Vancouver, Canada.
- 105. Zanuttigh, B., Van der Meer, J.W., 2008. Wave reflection from coastal structures in design conditions. Coast. Eng. 55(10), 771-779. https://doi.org/10.1016/j.coastaleng.2008.02.009
- 106. Zanuttigh, B., Van der Meer, J.W., Andersen, T.L., Lara, J.L., Losada, I.J., 2008. Analysis of wave reflection from structures with berms through an extensive database and 2DV numerical modelling. 31st International Conference of Coastal Engineering, Hamburg, Germany.
- 107. Zhang, Y., Li, M., Zhao, X., Chen, L., 2020. The effect of the coastal reflection on the performance of a floating breakwater-WEC system. Appl. Ocean. Res. 100, 102117. https://doi.org/10.1016/j.apor.2020.102117
- 108. Zhao, W., Wei, K., Zhong, X., 2023. Estimation of breaking wave region based on coupled wave and storm surge simulations of historical typhoons: A case study of Hangzhou Bay. Ocean. Eng. 286 (Part 1), 115596. https://doi.org/10.1016/J.OCEANENG.2023.115596
- 109. Zhao, Z., Wu, W., Wang, M., Du, Y., 2023. Circulation structure and dynamic characteristics of Western Tropical Indian Ocean associated with monsoon transitions. Deep-Sea Res. Pt. I 191, 103943. https://doi.org/10.1016/j.dsr.2022.103943
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5c0feebf-7de3-492b-85ec-62a949b8c43f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.