PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Aktywna metoda kontroli rozkładu napięć na szeregowo połączonych tranzystorach SiC MOSFET w łączniku 3,3 kV

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
EN
Active voltage balancing of series connected SiC MOSFETs in 3,3 kV power switch
Języki publikacji
PL
Abstrakty
PL
Niniejszy artykuł omawia aktywną metodą kompensacji nierównomiernego rozkładu napięć na szeregowo połączonych tranzystorach łącznika energoelektronicznego średniego napięcia, zbudowanego z wykorzystaniem modułów SiC MOSFET o napięciu przebicia 1,7 kV. Dzięki pomiarom napięć oraz odpowiedniemu opóźnieniu sygnałów sterujących można wyrównać napięcia na tranzystorach nie zwiększając czasów przełączania i energii wytracanych w tranzystorach. Artykuł ilustruje wyniki badań symulacyjnych i eksperymentalnych opracowanego łącznika przy napięciu 1,5 kV i prądzie 150 A.
EN
These paper presents active voltage balancing method of series connected transistors in medium voltage power switch, built of 1,7 kV SiC MOSFET modules. By measuring appropriate voltages in the power circuit and delaying the gate signals, it is possible to provide equal voltage sharing between transistors, without increasing the switching times and losses. The article illustrates the results of simulation study and laboratory experiments of developed power switch at 1,5 kV and 150 A.
Rocznik
Strony
80--85
Opis fizyczny
Bibliogr. 25 poz., rys., tab.
Twórcy
  • Politechnika Warszawska, Instytut Sterowania i Elektroniki Przemysłowej, ul. Koszykowa 75, 00-662 Warszawa
Bibliografia
  • [1] Palmour J. W. et al., Silicon carbide power MOSFETs: Breakthrough performance from 900 V up to 15 kV, 2014 IEEE 26th International Symposium on Power Semiconductor Devices & IC's (ISPSD), Waikoloa, HI, 2014, pp. 79-82
  • [2] Rabkowski J., Peftitsis D., Nee H., Silicon Carbide Power Transistors: A New Era in Power Electronics Is Initiated, in IEEE Industrial Electronics Magazine, vol. 6, no. 2, pp. 17- 26, June 2012
  • [3] Mai T., Van den Broeck G., Pevere A., Driesen J., Power electronics for potential distribution dc power evolution: A review, 2016 IEEE International Energy Conference (ENERGYCON), Leuven, 2016, pp. 1-6
  • [4] Kouba D., Kolar L., Celeda J., Jurik M., MV grids development and automation, in CIRED - Open Access Proceedings Journal, vol. 2017, no. 1, pp. 2440-2443, 10 2017
  • [5] Giannakis A., Peftitsis D., MVDC Distribution Grids and Potential Applications: Future Trends and Protection Challenges, 2018 20th European Conference on Power Electronics and Applications (EPE'18 ECCE Europe), Riga, 2018, pp. P.1-P.9
  • [6] Nguyen T., Yoo H., Kim H., A comparison study of MVDC and MVAC for deployment of distributed wind generations, 2016 IEEE International Conference on Sustainable Energy Technologies (ICSET), Hanoi, 2016, pp. 138-141
  • [7] Ravi B., Raval S., Rudraraju V. R. R., Nagamani C., Performance analysis of MVAC and MVDC offshore wind farm distribution system using direct load flow method, 2016 2nd International Conference on Advances in Electrical, Electronics, Information, Communication and Bio-Informatics (AEEICB), Chennai, 2016, pp. 341-346
  • [8] Madhusoodhanan S. et al., Solid-State Transformer and MV Grid Tie Applications Enabled by 15 kV SiC IGBTs and 10 kV SiC MOSFETs Based Multilevel Converters, in IEEE Transactions on Industry Applications, vol. 51, no. 4, pp. 3343- 3360, July-Aug. 2015
  • [9] Huang A. Q., Zhu Q., Wang L., Zhang L., 15 kV SiC MOSFET: An enabling technology for medium voltage solid state transformers, in CPSS Transactions on Power Electronics and Applications, vol. 2, no. 2, pp. 118-130, 2017
  • [10 Qawasmi A., Teichrib J., Venkatesh N., De Doncker R. W., A New Thyristor-Based Power Electronic Device for DC Circuit Breakers in Medium-Voltage Applications, 2018 9th IEEE International Symposium on Power Electronics for Distributed Generation Systems (PEDG), Charlotte, NC, 2018, pp. 1-6
  • [11] Mirzaee H., De A., Tripathi A., Bhattacharya S., Design Comparison of High-Power Medium-Voltage Converters Based on a 6.5-kV Si-IGBT/Si-PiN Diode, a 6.5-kV Si-IGBT/SiC-JBS Diode, and a 10-kV SiC-MOSFET/SiC-JBS Diode, in IEEE Transactions on Industry Applications, vol. 50, no. 4, pp. 2728- 2740, July-Aug. 2014
  • [12] Rabkowski J., Sobieski R., Zdanowski M. and Piasecki S.: 3.3 kV/ 450 a SiC MOSFET Module - Modelling and Experiments, 2018 20th European Conference on Power Electronics and Applications (EPE'18 ECCE Europe), Riga, 2018, pp. P.1-P.9.
  • [13] Johnson B., Pike G.E., Preparation of Papers for Transactions, IEEE Trans. Magn., 50 (2002), n.5, 133-137
  • [13] Marzoughi A., Wang J., Burgos R., Boroyevich D., Characterization and Evaluation of the State-of-the-Art 3.3-kV 400-A SiC MOSFETs, in IEEE Transactions on Industrial Electronics, vol. 64, no. 10, pp. 8247-8257, Oct. 2017
  • [14] Wang L., Zhang D., Wang Y, High performance solid-state switches using series-connected SiC-MOSFETs for high voltage applications, 2016 IEEE 8th International Power Electronics and Motion Control Conference (IPEMC-ECCE Asia), Hefei, 2016, pp. 1674-1679
  • [15] Vechalapu K., Hazra S., Raheja U., Negi A., Bhattacharya S, High-speed medium voltage (MV) drive applications enabled by series connection of 1.7 kV SiC MOSFET devices, 2017 IEEE Energy Conversion Congress and Exposition (ECCE), Cincinnati, OH, 2017, pp. 808-815
  • [16] Vechalapu K., Bhattacharya S., Aleoiza E., Performance evaluation of series connected 1700V SiC MOSFET devices, 2015 IEEE 3rd Workshop on Wide Bandgap Power Devices and Applications (WiPDA), Blacksburg, VA, 2015, pp. 184-191
  • [17] Shammas N. Y. A., Withanage R., Chamund D., Review of series and parallel connection of IGBTs, in IEE Proceedings - Circuits, Devices and Systems, vol. 153, no. 1, pp. 34-39, Feb. 2006
  • [18] Peftitsis D., Rabkowski J., Nee H., Undeland T., Challenges on drive circuit design for series-connected SiC power transistors, 2016 European Conference on Silicon Carbide & Related Materials (ECSCRM), Halkidiki, 2016, pp. 1-1
  • [19] Marzoughi A., Burgos R., Boroyevich D., Active Gate-Driver With dv/dt Controller for Dynamic Voltage Balancing in Series- Connected SiC MOSFETs, in IEEE Transactions on Industrial Electronics, vol. 66, no. 4, pp. 2488-2498, April 2019
  • [20] Lee I., Yao X., Active gate control for series connected SiC MOSFETs, 2019 IEEE Applied Power Electronics Conference and Exposition (APEC), Anaheim, CA, USA, 2019, pp. 453-457
  • [21] Parashar S., Bhattacharya S., A Novel Gate Driver for Active Voltage Balancing in 1.7kV Series Connected SiC MOSFETs, 2019 IEEE Applied Power Electronics Conference and Exposition (APEC), Anaheim, CA, USA, 2019, pp. 2773- 2779
  • [22] Wang P., Gao F., Jing Y., Hao Q., Li K., Zhao H., An Integrated Gate Driver with Active Delay Control Method for Series Connected SiC MOSFETs, 2018 IEEE 19th Workshop on Control and Modeling for Power Electronics (COMPEL), Padua, 2018, pp. 1-6
  • [23] Zhang Z. et al., High precision gate signal timing control based active voltage balancing scheme for series-connected fast switching field-effect transistors, 2018 IEEE Applied Power Electronics Conference and Exposition (APEC), San Antonio, TX, 2018, pp. 925-930
  • [24] Chen J., Lin J., Ai T., The techniques of the serial and paralleled IGBTs, Proceedings of the 1996 IEEE IECON. 22nd International Conference on Industrial Electronics, Control, and Instrumentation, Taipei, Taiwan, 1996, pp. 999-1004 vol.2.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5c0f9d29-ca8b-4c85-bcdf-8e937014e489
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.