PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Biodegradable bone implants in orthopedic applications: a review

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A biologically - validated biodegradable material must comfortably stay in the physiological environment it is placed in, before finally disappearing over the intended period of time with adequate rates of degradation. The primary objective and utility of such a material is to eliminate the requirement of secondary surgery in applications involving bone implants. In recent decades, biodegradable alloys have exhibited enhanced biocompatibility, and im-proved mechanical and biodegradation properties. This has generated renewed interest in the design of bone implants made up of such materials that can successfully support fractured bone till the culmination of the healing process. However, striking a balance between two seemingly conflicting requirements, namely - sustaining the strength of the implant till the bone acquires the desired strength of its own, and allowing the implant to keep losing strength with its gradual degradation – may be rather complex. To manage this, different healing phases and the associated bone - biodegradable implant interface mechan-obiology needs to be focused upon. An adequate and/or optimal design of the implant is based on mechanical properties, degradation rates of implant and bone-biodegradable implant interface interactivity. This review mainly focuses on bone - biodegradable implant interface with due consideration accorded to the mechanical properties, degradation rates and healing process in a standard duration.
Twórcy
  • Department of Mechanical Engineering, Maulana Azad National Institute of Technology, Bhopal, Madhya Pradesh 462003, India
autor
  • Department of Mechanical Engineering, Maulana Azad National Institute of Technology, Bhopal, Madhya Pradesh, India
Bibliografia
  • [1] Ghiasi MS, Chen J, Vaziri A, Rodriguez EK, Nazarian A. Bone fracture healing in mechanobiological modeling: a review of principles and methods. Bone Rep 2017;6:87–100.
  • [2] Torres AM, et al. Bone-inspired microarchitectures achieve enhanced fatigue life. Proc Natl Acad Sci 2019;201905814.
  • [3] Mohandas A, Stucker B, Yang Y, Stevens B, Nguyen KT. A review of materials, fabrication methods, and strategies used to enhance bone regeneration in engineered bone tissues. J Biomed Mater Res Part B Appl Biomater 2007;85 (2):573–82.
  • [4] Chaya A, et al. In vivo study of magnesium plate and screw degradation and bone fracture healing. Acta Biomater 2015;18:262–9.
  • [5] Hanson B, Van Der Werken C, Stengel D. Surgeons' beliefs and perceptions about removal of orthopaedic implants. BMC Musculoskelet Disord 2008;9:1–8.
  • [6] Witte F, Eliezer A. Biodegradable metals. In degradation of implant materials, vol. 9781461439. 2012;p. 93–109.
  • [7] Uhthoff HK, Poitras P, Backman DS. Internal plate fixation of fractures: short history and recent developments. J Orthop Sci 2006;11(2):118–26.
  • [8] Williams DF. On the mechanisms of biocompatibility. Biomaterials 2008;29(20):2941–53.
  • [9] Kuwahara H, et al. Surface reaction of magnesium in Hank's solutions. Mater Sci Forum 2000;350–351:349–58.
  • [10] Richard M, Thomas E. The biology of fracture healing. Injury 2012;42(6):551–5.
  • [11] Koç M, Tahmasebifar A, Evis Z, Sezer N, Kayhan SM. Review of magnesium-based biomaterials and their applications. J Magnes Alloy 2018;6(1):23–43.
  • [12] Lohmann CH, Hameister R, Singh G. Allergies in orthopaedic and trauma surgery. Orthop Traumatol Surg Res 2017;103(1):S75–81.
  • [13] Chen Y, Xu Z, Smith C, Sankar J. Recent advances on the development of magnesium alloys for biodegradable implants. Acta Biomater 2014;10(11):4561–73.
  • [14] Karpouzos A, Diamantis E, Farmaki P, Savvanis S, Troupis T. Nutritional aspects of bone health and fracture healing. J Osteoporos 2017;2017:1–10.
  • [15] Radha R, Sreekanth D. Insight of magnesium alloys and composites for orthopedic implant applications – a review. J Magnes Alloy 2017;5(3):286–312. Elsevier B.V.
  • [16] Wang W, et al. Novel biocompatible magnesium alloys design with nutrient alloying elements Si, Ca and Sr: structure and properties characterization. Mater Sci Eng B Solid-State Mater Adv Technol 2016;214:26–36.
  • [17] Li H, Yang H, Zheng Y, Zhou F, Qiu K, Wang X. Design and characterizations of novel biodegradable ternary Zn-based alloys with IIA nutrient alloying elements Mg, Ca and Sr. Mater Des 2015;83:95–102.
  • [18] Tian L, et al. Hybrid fracture fixation systems developed for orthopaedic applications: a general review. J Orthop Transl 2019;16:1–13.
  • [19] Wang Y, Zhu Z, Xu X, He Y, Zhang B. Improved corrosion resistance and biocompatibility of a calcium phosphate coating on a magnesium alloy for orthopedic applications. Eur J Inflamm 2016;14(3):169–83.
  • [20] Ghasemi-mobarakeh L, Kolahreez D, Ramakrishna S, Williams D. Key terminology in biomaterials and biocompatibility. Curr Opin Biomed Eng 2019.
  • [21] Kuwahara H, et al. Surface reaction of magnesium in Hank's solutions. Mater Sci Forum 2009;350–351:349–58.
  • [22] Peng Q, Huang Y, Zhou L, Hort N, Kainer KU. Preparation and properties of high purity Mg-Y biomaterials. Biomaterials 2010;31(3):398–403.
  • [23] Wang YP, et al. In vitro degradation and biocompatibility of Mg-Nd-Zn-Zr alloy. Chin Sci Bull 2012;57(17):2163–70.
  • [24] Zhong S, Xi T, Zheng Y, Gu X, Cheng Y. In vitro corrosion and biocompatibility of binary magnesium alloys. Biomaterials 2008;30(4):484–98.
  • [25] Qin H, et al. Enhanced antibacterial properties, biocompatibility, and corrosion resistance of degradable Mg-Nd-Zn-Zr alloy. Biomaterials 2015;53:211–20.
  • [26] Liu J, et al. In vitro and in vivo studies of Mg-30Sc alloys with different phase structure for potential usage within bone. Acta Biomater 2019.
  • [27] Willbold E, et al. Effect of the addition of low rare earth elements (lanthanum, neodymium, cerium) on the biodegradation and biocompatibility of magnesium. Acta Biomater 2015;11(1):554–62.
  • [28] Yang S-J, et al. The modification of microstructure to improve the biodegradation and mechanical properties of a biodegradable Mg alloy. J Mech Behav Biomed Mater 2012;20:54–60.
  • [29] Yan Y, et al. Effects of Zn concentration and heat treatment on the microstructure, mechanical properties and corrosion behavior of as-extruded Mg-Zn alloys produced by powder metallurgy. J Alloys Compd 2017;693:1277–89.
  • [30] Li T, He Y, Zhou J, Tang S, Yang Y, Wang X. Effects of scandium addition on biocompatibility of biodegradable Mg–1.5Zn–0.6Zr alloy. Mater Lett 2018;215:200–2.
  • [31] Steflik DE, Corpe RS, Young TR, Buttle K. In vivo evaluation of the biocompatibility of implanted biomaterials: morphology of the implant-tissue interactions. Implant Dent 1998;7(4):338–50.
  • [32] Yu Y, Lu H, Sun J. Long-term in vivo evolution of high-purity Mg screw degradation — local and systemic effects of Mg degradation products. Acta Biomater 2018;71:215–24.
  • [33] Tong X, et al. Microstructure, mechanical properties, biocompatibility, and in vitro corrosion and degradation behavior of a new Zn–5Ge alloy for biodegradable implant materials. Acta Biomater 2018;82:197–204.
  • [34] Liu B, Zheng YF. Effects of alloying elements (Mn, Co, Al, W, Sn, B, C and S) on biodegradability and in vitro biocompatibility of pure iron. Acta Biomater 2011;7 (3):1407–20.
  • [35] He R, Liu R, Chen Q, Zhang H, Wang J, Guo S. In vitro degradation behavior and cytocompatibility of Mg-6Zn-Mn alloy. Mater Lett 2018;228:77–80.
  • [36] Liu X, et al. Microstructure, mechanical properties, in vitro degradation behavior and hemocompatibility of novel Zn- Mg-Sr alloys as biodegradable metals. Mater Lett 2016;162:242–5.
  • [37] Wang Q, Tan L, Yang K. Cytocompatibility and Hemolysis of AZ31B Magnesium Alloy with Si-containing Coating. J Mater Sci Technol 2015;31(8):845–51.
  • [38] Ziola-Frankowska A, et al. The content of the 14 metals in cancellous and cortical bone of the hip joint affected by osteoarthritis. Biomed Res Int 2015;2015.
  • [39] Li L, Xu G, Shao H, Zhang ZH, Pan XF, Li JY. Analysis of blood concentrations of zinc, germanium, and lead and relevant environmental factors in a population sample from Shandong Province, China. Int J Environ Res Public Health 2017;14(3):1–13.
  • [40] Pleban PA, Pearson KH. Determination of manganese in whole blood and serum. Clin Chem 1979;25(11):1915–8.
  • [41] Jugdaohsingh R. Europe PMC funders group Europe PMC funders author manuscripts SILICON AND BONE HEALTH. J Nutr Heal Aging 2009;11(2):99–110.
  • [42] Shimbo S, Watanabe T, Nakatsuka H, Yaginuma-Sakurai K, Ikeda M. Dietary tin intake and association with canned food consumption in Japanese preschool children. Environ Health Prev Med 2013;18(3):230–6.
  • [43] Scozzafava A. Handbook on toxicity of inorganic compounds, 165. United States: Marcel Dekker; 1989. 1.
  • [44] Witte F, et al. Degradable biomaterials based on magnesium corrosion. Curr Opin Solid State Mater Sci 2008;12(5–6):63–72.
  • [45] Jamdar J, et al. Reduction in tibial shaft fracture healing time with essential nutrient supplementation containing ascorbic acid, lysine, and proline. J Altern Complement Med 2004;10(6):915–6.
  • [46] Flodin L, et al. Effects of protein-rich nutritional supplementation and bisphosphonates on body composition, handgrip strength and health-related quality of life after hip fracture: a 12-month randomized controlled study. BMC Geriatr 2015;15(149).
  • [47] Guo JJ, Yang H, Qian H, Huang L, Guo Z, Tang T. The effects of different nutritional measurements on delayed wound healing after hip fracture in the elderly. J Surg Res 2010;159 (1):503–8.
  • [48] Karen JFK, Burg JL, Scott Porter. Biomaterial developments for bone tissue engineering. Biomaterials 2000;21:2347–59.
  • [49] Liu D, Xu G, Jamali SS, Zhao Y, Chen M, Jurak T. Fabrication of biodegradable HA/Mg-Zn-Ca composites and the impact of heterogeneous microstructure on mechanical properties, in vitro degradation and cytocompatibility. Bioelectrochemistry 2019;129:106–15.
  • [50] Rustom LE, Poellmann MJ, Wagoner Johnson AJ. Mineralization in micropores of calcium phosphate scaffolds. Acta Biomater 2019;83:435–55.
  • [51] Han HS, et al. Current status and outlook on the clinical translation of biodegradable metals. Mater Today 2019;23:57–71.
  • [52] Li HF, et al. Development of biodegradable Zn-1X binary alloys with nutrient alloying elements Mg, Ca and Sr. Sci Rep 2015;5(1):1–14.
  • [53] Gonzalez J, Hou RQ, Nidadavolu EPS, Willumeit-Römer R, Feyerabend F. Magnesium degradation under physiological conditions – best practice. Bioact Mater 2018;3(2):174–85.
  • [54] Esmaily M, et al. Fundamentals and advances in magnesium alloy corrosion. Prog Mater Sci 2017;89:92–193.
  • [55] Manam NS, et al. Study of corrosion in biocompatible metals for implants: A review. J Alloys Compd 2017;701:698–715. Elsevier B.V.
  • [56] Yun Y, et al. Revolutionizing biodegradable metals. Mater Today 2009;12(10):22–32.
  • [57] Sanchez AHM, Luthringer BJC, Feyerabend F, Willumeit R. Mg and Mg alloys: how comparable are in vitro and in vivo corrosion rates? A review. Acta Biomater 2015;13(3):16–31.
  • [58] Walker J, et al. Magnesium alloys: predicting in vivo corrosion with in vitro immersion testing. J Biomed Mater Res - Part B Appl Biomater 2012;100B(4):1134–41.
  • [59] Razavi M, Fathi M, Savabi O, Vashaee D, Tayebi L. In vivo assessments of bioabsorbable AZ91 magnesium implants coated with nanostructured fluoridated hydroxyapatite by MAO/EPD technique for biomedical applications. Mater Sci Eng C 2015;48:21–7.
  • [60] Xiao C, et al. Indirectly extruded biodegradable Zn-0.05wt %Mg alloy with improved strength and ductility: in vitro and in vivo studies. J Mater Sci Technol 2018;34(9):1618–27.
  • [61] Li Z, Shizhao S, Chen M, Fahlman BD, Debao Liu, Bi H. In vitro and in vivo corrosion, mechanical properties and biocompatibility evaluation of MgF2-coated Mg-Zn-Zr alloy as cancellous screws. Mater Sci Eng C 2017;75:1268–80.
  • [62] Huehnerschulte TA, Angrisani N, Rittershaus D, Bormann D, Windhagen H, Meyer-Lindenberg A. In vivo corrosion of two novel magnesium alloys ZEK100 and AX30 and their mechanical suitability as biodegradable implants. Materials (Basel) 2011;4(6):1144–67.
  • [63] Aghion E, Levy G, Ovadia S. In vivo behavior of biodegradable Mg–Nd–Y–Zr–Ca alloy. J Mater Sci Mater Med 2011;23(3):805–12.
  • [64] Kraus T, Fischerauer SF, Hänzi AC, Uggowitzer PJ, Löffler JF, Weinberg AM. Magnesium alloys for temporary implants in osteosynthesis: in vivo studies of their degradation and interaction with bone. Acta Biomater 2012;8(3):1230–8.
  • [65] Wang H, Shi Z. In vitro biodegradation behavior of magnesium and magnesium alloy. J Biomed Mater Res - Part B Appl Biomater 2011;98B(2):203–9.
  • [66] Gu XN, Zheng YF, Chen LJ. Influence of artificial biological fluid composition on the biocorrosion of potential orthopedic Mg–Ca, AZ31, AZ91 alloys. Biomed Mater 2009;4 (6):65011.
  • [67] Witte F, et al. Biodegradable magnesium-hydroxyapatite metal matrix composites. Biomaterials 2007;28(13):2163–74.
  • [68] Gui Z, Kang Z, Li Y. Corrosion mechanism of the as-cast and as-extruded biodegradable Mg-3.0Gd-2.7Zn-0.4Zr- 0.1Mn alloys. Mater Sci Eng C 2019;96:831–40.
  • [69] Shangguan Y, Wan P, Tan L, Fan X, Qin L, Yang K. Investigation of the inner corrosion layer formed in pulse electrodeposition coating on Mg-Sr alloy and corresponding degradation behavior. J Colloid Interface Sci 2016;481:1–12.
  • [70] Yao H, Wen J, Xiong Y, Lu Y, Ren F, Cao W. Extrusion temperature impacts on biometallic Mg-2.0Zn-0.5Zr-3.0Gd (wt%) solid-solution alloy. J Alloys Compd 2018;739:468–80.
  • [71] Chen J, Tan L, Yang K. Effect of heat treatment on mechanical and biodegradable properties of an extruded ZK60 alloy. Bioact Mater 2017;2(1):19–26.
  • [72] Ibrahim H, Klarner AD, Poorganji B, Dean D, Luo AA, Elahinia M. Microstructural, mechanical and corrosion characteristics of heat-treated Mg-1.2Zn-0.5Ca (wt%) alloy for use as resorbable bone fixation material. J Mech Behav Biomed Mater 2017;69:203–12.
  • [73] Li Z, et al. The synergistic effect of trace Sr and Zr on the microstructure and properties of a biodegradable Mg-Zn- Zr-Sr alloy. J Alloys Compd 2017;702:290–302.
  • [74] Prakasam M, Locs J, Salma-Ancane K, Loca D, Largeteau A, Berzina-Cimdina L. Biodegradable materials and metallic implants—a review. J Funct Biomater 2017;8(4):44.
  • [75] Shuai C, et al. Enhanced stability of calcium sulfate scaffolds with 45S5 bioglass for bone repair. Materials (Basel) 2015;8(11):7498–510.
  • [76] Kumar K, Gill RS, Batra U. Challenges and opportunities for biodegradable magnesium alloy implants. Mater Technol 2018;33(2):153–72.
  • [77] Srinivasan A, Blawert C, Huang Y, Mendis CL, Kainer KU, Hort N. Corrosion behavior of Mg-Gd-Zn based alloys in aqueous NaCl solution. J Magnes Alloy 2014;2(3):245–56.
  • [78] Peng X, Chu PK, Qasim AM, Wang G, Jin W, Li W. Tantalum nitride films for corrosion protection of biomedical Mg-Y-RE alloy. J Alloys Compd 2018;764:947–58.
  • [79] Gopi D, Bhalaji PR, Ramya S, Kavitha L. Evaluation of biodegradability of surface treated AZ91 magnesium alloy in SBF solution. J Ind Eng Chem 2015;23:218–27.
  • [80] Puleo DA, Nanci A. Understanding and controlling the bone- implant interface. Biomaterials 1999;20(23–24):2311–21.
  • [81] Gao X, Fraulob M, Haïat G. Biomechanical behaviours of the bone-implant interface: a review. J R Soc Interface 2019;16(156).
  • [82] Saini M. Implant biomaterials: a comprehensive review. World J Clin Cases 2015;3(1):52.
  • [83] Chen J, Tan L, Yu X, Etim IP, Ibrahim M, Yang K. Mechanical properties of magnesium alloys for medical application: a review. J Mech Behav Biomed Mater 2018;87:68–79.
  • [84] Claes LE. Mechanical characterization of biodegradable implants. Clin Mater 1992;10(1–2):41–6.
  • [85] Cui Z, Li W, Cheng L, Gong D, Cheng W, Wang W. Effect of nano-HA content on the mechanical properties, degradation and biocompatible behavior of Mg-Zn/HA composite prepared by spark plasma sintering. Mater Charact 2019;151:620–31.
  • [86] Zhang Y, Li J, Li J. Effects of microstructure transformation on mechanical properties, corrosion behaviors of Mg-Zn- Mn-Ca alloys in simulated body fluid. J Mech Behav Biomed Mater 2018;80:246–57.
  • [87] Gui Z, Kang Z, Li Y. Mechanical and corrosion properties of Mg-Gd-Zn-Zr-Mn biodegradable alloy by hot extrusion. J Alloys Compd 2016;685:222–30.
  • [88] Yu Z, et al. Effects of minor Sr addition on microstructure, mechanical and bio-corrosion properties of the Mg-5Zn based alloy system. J Alloys Compd 2016;691:95–102.
  • [89] Mansourvar M, Ismail MA, Herawan T, Gopal Raj R, Abdul Kareem S, Nasaruddin FH. Automated bone age assessment: motivation, taxonomies, and challenges. Comput Math Methods Med 2013;2013.
  • [90] Overgaard S. Calcium phosphate coatings for fixation of bone implants Evaluated mechanically and histologically by stereological methods, 71. 2001. sup297.
  • [91] Hulth A. Current concepts of fracture healing. Clin Orthop Relat Res 1989;249:265–84.
  • [92] Perren SM. Physical and biological aspects of fracture healing with special reference to internal fixation. Clin Orthop Relat Res 1979;138:175–96.
  • [93] Doblaré M, García JM, Gómez MJ. Modelling bone tissue fracture and healing: a review. Eng Fract Mech 2004;71 (13–14):1809–40.
  • [94] Perren SM, Rahn BA. Biomechanics of fracture healing. Can J Surg 1980;23(3):228–32.
  • [95] Pivonka P, Dunstan CR. Role of mathematical modeling in bone fracture healing. Bonekey Rep 2012;1:1–10.
  • [96] Monteiro SD. Fracture healing: mechanisms and interventions Thomas. Nat Rev Rheumatol 2015;11(1):45–54.
  • [97] Hadjiargyrou M, et al. Transcriptional profiling of bone regeneration. Insight into the molecular complexity of wound repair. J Biol Chem 2002;277(33):30177–82.
  • [98] Gerstenfeld LC, Cullinane DM, Barnes GL, Graves DT, Einhorn TA. Fracture healing as a post-natal developmental process: molecular, spatial, and temporal aspects of its regulation. J Cell Biochem 2003;88(5):873–84.
  • [99] Wang M, Yang N. A review of bioregulatory and coupled mechanobioregulatory mathematical models for secondary fracture healing. Med Eng Phys 2017;48:90–102.
  • [100] Gibon E, Lu LY, Nathan K, Goodman SB. Inflammation, ageing, and bone regeneration. J Orthop Transl 2017;10:28–35.
  • [101] Claes SIA, Reckhangel L. Fracture healing under healthy and inflammatory conditions. Nat Rev Rheumatol 2010;8:133–43.
  • [102] Nakahara H, et al. Bone and cartilage formation in diffusion chambers by subcultured cells derived from the periosteum. Bone 1990;11(3):181–8.
  • [103] Kon T, et al. Expression of osteoprotegerin, receptor activator of NF-kB ligand (osteoprotegerin ligand) and related proinflammatory cytokines during fracture healing. J Bone Miner Res 2001;16(6):1004–14.
  • [104] Malizos KN, Papatheodorou LK. The healing potential of the periosteum. Injury 2005;36(3):S13–9.
  • [105] Barnes GL, Kostenuik PJ, Gerstenfeld LC, Einhorn TA. Growth factor regulation of fracture repair. J Bone Miner Res 1999;14(11):1805–15.
  • [106] Isaksson H. Recent advances in mechanobiological modeling of bone regeneration. Mech Res Commun 2012;42:22–31.
  • [107] Rao ABS, Pandya HJ. Engineering approaches for characterizing soft tissue mechanical properties: a review. Clin Biomech 2019;69:127–40.
  • [108] Gerstenfeld LC, et al. Three-dimensional reconstruction of fracture callus morphogenesis. J Histochem Cytochem 2006;54(11):1215–28.
  • [109] Wubneh A, Tsekoura EK, Ayranci C, Uludag H. Current state of fabrication technologies and materials for bone tissue engineering. Acta Biomater 2018;80:1–30.
  • [110] Einhorn TA. The cell and molecular biology of fracture healing. Clin Orthop Relat Res 1998;355:S7–21.
  • [111] Einhorn TA. Enhancement of fracture-healing. J Bone Joint Surg Am 1995;77(6):940–56.
  • [112] Claes LE, et al. Effects of mechanical factors on the fracture healing process. Clin Orthop Relat Res 1998;355:S132–47.
  • [113] Geris L, Vander Sloten J, Van Oosterwyck H. In silico biology of bone modelling and remodelling: Regeneration. Philos Trans R Soc A Math Phys Eng Sci 2009;367:2031–53.
  • [114] Hollinger J, Wong MEK. The integrated processes of hard tissue regeneration with special emphasis on fracture healing. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 1996;82(6):594–606.
  • [115] Schindeler A, McDonald MM, Bokko P, Little DG. Bone remodeling during fracture repair: the cellular picture. Semin Cell Dev Biol 2008;19(5):459–66.
  • [116] Little DG, Ramachandran M, Schindeler A. The anabolic and catabolic responses in bone repair. J Bone Joint Surg Br 2007;89B(4):425–33.
  • [117] Augat P, Burger J, Schorlemmer S, Henke T, Peraus M, Claes L. Shear movement at the fracture site delays healing in a diaphyseal fracture model. J Orthop Res 2003;21(6):1011–7.
  • [118] Claes LE, Cunningham JL. Monitoring the mechanical properties of healing bone. Clin Orthop Relat Res 2009;467 (8):1964–71.
  • [119] Ortega R. Remarks on the treatment of fractures. J Am Med Assoc 1897;(3):122–3.
  • [120] Woo SL-Y, et al. Less rigid internal fixation plates: Historical perspectives and new concepts. J Orthop Res 1983;1(4):431–49.
  • [121] Eggers GWN. Internal contact splint. JBJS 1948;30(1).
  • [122] Sepehri B, Taheri E, Ganji R. Biomechanical analysis of diversified screw arrangement on 11 holes locking compression plate considering time-varying properties of callus. Biocybern Biomed Eng 2014;34(4):220–9.
  • [123] Biswas JK, et al. Design factors of lumbar pedicle screws under bending load: a finite element analysis. Biocybern Biomed Eng 2019;39(1):52–62.
  • [124] Slone RM, Heare MM, Vander Griend RA, Montgomery WJ. Othopedic Fixation Devices. Radiographics 1991;11:823–47.
  • [125] Nieto H, Baroan C. Limits of internal fixation in long-bone fracture. Orthop Traumatol Surg Res 2017;103(1):S61–6. Elsevier Masson SAS.
  • [126] Brosh T, Persovski Z, Binderman I. Mechanical properties of bone-implant interface: an in vitro comparison of the parameters at placement and at 3 months. Int J Oral Maxillofac Implants 1995;10(6):729–35.
  • [127] Limmahakhun S, Oloyede A, Sitthiseripratip K, Xiao Y, Yan C. Stiffness and strength tailoring of cobalt chromium graded cellular structures for stress-shielding reduction. Mater Des 2017;114:633–41.
  • [128] Sheikh Z, Najeeb S, Khurshid Z, Verma V, Rashid H, Glogauer M. Biodegradable materials for bone repair and tissue engineering applications. Materials (Basel) 2015;8(9):5744–94.
  • [129] Shah FA, Thomsen P, Palmquist A. Osseointegration and current interpretations of the bone-implant interface. Acta Biomater 2019;84:1–15.
  • [130] Xu Y, et al. Quantifying the degradation of degradable implants and bone formation in the femoral condyle using micro-CT 3D reconstruction. Exp Ther Med 2018;15(1):93–102.
  • [131] Prasadh S, Wong RCW. Unraveling the mechanical strength of biomaterials used as a bone scaffold in oral and maxillofacial defects. Oral Sci Int 2018;15(2):48–55.
  • [132] Li G, et al. Dual modulation of bone formation and resorption with zoledronic acid-loaded biodegradable magnesium alloy implants improves osteoporotic fracture healing: an in vitro and in vivo study. Acta Biomater 2018;65:486–500.
  • [133] Bose S, Robertson SF, Bandyopadhyay A. Surface modification of biomaterials and biomedical devices using additive manufacturing. Acta Biomater 2018;66:6–22.
  • [134] Gülses A, et al. Osteosynthesis of a cranio-osteoplasty with a biodegradable magnesium plate system in miniature pigs. Acta Biomater 2017;62:434–45.
  • [135] Witte F. Reprint of: the history of biodegradable magnesium implants: a review. Acta Biomater 2015;23: S28–40.
  • [136] Song MS, et al. Recent advances in biodegradation controls over Mg alloys for bone fracture management: a review. J Mater Sci Technol 2019;35(4):535–44.
  • [137] Li C, et al. Design of biodegradable, implantable devices towards clinical translation. Nat Rev Mater 2019.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5c0b0f23-557f-429d-bc29-566f3ee166c0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.