PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Preparation of oyster shell waste impregnated with bimetal nitrate as a carbon dioxide gasadsorbent to reduce global warming

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The increase in greenhouse gas concentrations has intensified the impact of global warming. Oyster shell (OS) as a source of CaCO₃ has been considered as one of the methods to reduce CO₂, which is one of the primary contributors to global warming. Among various approaches, the adsorption method has proven effective in reducing CO₂ emissions. This study aims to produce an adsorbent from oyster shells impregnated with metal nitrates that is selective for CO₂ gas. The adsorbent preparation was carried out using the Successive Incipient Wetness Impregnation (SIWI) method, with the material formulation calculated based on stoichiometric ratios. The metal nitrate concentration was 2.5%wt (for both aluminum and magnesium metal oxides). The resulting adsorbent was characterized using SEM-EDS (morphology) to indicate Al and Mg have been impregnated in oyster shells with 0.5% each. CO₂ capture/adsorption was measured using TGA, and it found OS/Al exhibited the highest weight loss (5%). Therefore, aluminum nitrate impregnation (OS/Al 5’) is the most effective approach for enhancing the CO₂ adsorption capacity of oyster shells.
Słowa kluczowe
Twórcy
autor
  • Chemistry Department, FKIP, Universitas Syiah Kuala, Darussalam Banda Aceh, 23111, Indonesia
autor
  • Chemistry Department, FKIP, Universitas Syiah Kuala, Darussalam Banda Aceh, 23111, Indonesia
  • Chemistry Department, FKIP, Universitas Syiah Kuala, Darussalam Banda Aceh, 23111, Indonesia
autor
  • Chemistry Department, FKIP, Universitas Syiah Kuala, Darussalam Banda Aceh, 23111, Indonesia
  • School of Chemical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
Bibliografia
  • 1. Bellei, P., Torres, I., Solstad, R., & Flores-Colen, I. (2023). Potential use of oyster shell waste in the composition of construction composites: A review. Buildings, 13(6), 1546. https://doi.org/10.3390/buildings13061546
  • 2. Gołasa, P., Wysokiński, M., Bieńkowska-Gołasa, W., Gradziuk, P., Golonko, M., Gradziuk, B., Siedlecka, A., & Gromada, A. (2021). Sources of greenhouse gas emissions in agriculture, with particular emphasis on emissions from energy used. Energies, 14(13), 3784. https://doi.org/10.3390/en14133784
  • 3. Imani, M., Tahmasebpoor, M., & Sánchez-Jiménez, P. E. (2023). Metal- based eggshell particles prepared via successive incipient wetness impregnation method as a promoted sorbent for CO2 capturing in the calcium looping process. Journal of Environmental Chemical Engineering, 11(5). https://doi.org/10.1016/j.jece.2023.110584
  • 4. Lindsey, R. (2023, May 12). Climate Change: Atmospheric Carbon Dioxide. Https://Www.Climate.Gov/News-Features/Understanding-Climate/ Climate-Change-Atmospheric-Carbon-Dioxide.
  • 5. Lindsey, R., & Dahlman, L. (2024, January 18). Climate Change: Global Temperature. Https://Www.Climate.Gov/News-Features/Understanding-Climate/Climate-Change-Global- Temperature#:~:Text=Earth%27s%20temperature%20has%20risen%20by,0.20°%20C)%20 per%20decade.
  • 6. Liu, C., Wu, Y., Lan, G., Ji, X., Xia, Y., Fu, C., Shen, J., Gui, J., Liu, Y., Qu, Y., & Peng, H. (2022). CO2 capture performance of biochar prepared from sewage sludge after conditioning with different dewatering agents. Journal of Environmental Chemical Engineering, 10(5), 108318. https://doi.org/10.1016/j.jece.2022.108318
  • 7. Ma, X., Zhu, Z., Wu, J., Wei, H., Gong, C., Yoriya, S., He, P., Luo, G., & Yao, H. (2024). Structural reconfiguration of Al/CaO adsorbent by Ni doping to improve sintering resistance and arsenic removal performance. Applied Surface Science, 652, 159325. https://doi.org/10.1016/j.apsusc.2024.159325
  • 8. Mola, R., Stępień, E., & Cieślik, M. (2017). Characterization of the surface layer of mg enriched with Al and Si by thermochemical treatment. Archives of Foundry Engineering, 17(4), 195–199. https://doi.org/10.1515/afe-2017-0157
  • 9. Murawska, A., & Goryńska-Goldmann, E. (2023). Greenhouse gas emissions in the agricultural and industrial sectors—Change trends, economic conditions, and country classification: Evidence from the European Union. Agriculture, 13(7), 1354. https://doi.org/10.3390/agriculture13071354
  • 10. Oschatz, M., & Antonietti, M. (2018). A search for selectivity to enable CO2 capture with porous adsorbents. In Energy and Environmental Science 11(1), 57–70. Royal Society of Chemistry. https://doi.org/10.1039/c7ee02110k
  • 11. Rahman Md. Rezaur, Hamdan Sinin, & Chang Hui Josephine Lai. (2017). Differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) of wood polymer nanocomposites. MATEC Web Conf., 87, 3013. https://doi.org/10.1051/matecconf/20178703013
  • 12. Soo, X. Y. D., Lee, J. J. C., Wu, W.-Y., Tao, L., Wang, C., Zhu, Q., & Bu, J. (2024). Advancements in CO2 capture by absorption and adsorption: A comprehensive review. Journal of CO2 Utilization, 81, 102727. https://doi.org/10.1016/j.jcou.2024.102727
  • 13. Wolff, N. H., Zeppetello, L. R. V., Parsons, L. A., Aggraeni, I., Battisti, D. S., Ebi, K. L., Game, E. T., Kroeger, T., Masuda, Y. J., & Spector, J. T. (2021). The effect of deforestation and climate change on all-cause mortality and unsafe work conditions due to heat exposure in Berau, Indonesia: a modelling study. The Lancet Planetary Health, 5(12), e882–e892. https://doi.org/10.1016/S2542-5196(21)00279-5
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5c0ae305-21b2-4b2e-9c9f-202f7885837d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.