PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Flexural vibration and buckling analysis of single-walled carbon nanotubes using different gradient elasticity theories based on Reddy and Huu-Tai formulations

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of the present work is to analyze free flexural vibration and buckling of single-walled carbon nanotubes (SWCNT) under compressive axial loading based on different constitutive equations and beam theories. The models contain a material length scale parameter that can capture the size effect, unlike the classical Euler-Bernoulli or Reddy beam theory. The equations of motion of the Reddy and the Huu-Tai beam theories are reformulated using different gradient elasticity theories, including stress, strain and combined strain/inertia. The equations of motion are derived from Hamilton’s principle in terms of the generalized displacements. Analytical solutions of free vibration and buckling are presented to bring out the effect of the nonlocal behavior on natural frequencies and buckling loads. The presented theoretical analysis is illustrated by a numerical example, and the results are qualitatively compared by another results.
Rocznik
Strony
217--233
Opis fizyczny
Bibliogr. 37 poz., rys., tab.
Twórcy
  • Mathematical Institute of the Serbian Academy of Sciences and Arts, Belgrade, Serbia
autor
  • University of Niš, Department of Mechanical Engineering, Niš, Serbia
autor
  • University of Niš, Department of Mechanical Engineering, Niš, Serbia
Bibliografia
  • 1. Adali S., 2012, Variational formulation for buckling of multi-walled carbon nanotubes modelled as nonlocal Timoshenko beams, Journal of Theoretical and Applied Mechanics, 50, 1, 321-333
  • 2. Akgoz B., Civalek ¨ O. ¨ , 2011, Strain gradient elasticity and modified couple stress models for buckling analysis of axially loaded micro-scaled beams, International Journal of Engineering Science, 49, 11, 1268-1280
  • 3. Akgoz B., Civalek ¨ O. ¨ , 2012, Analysis of micro-sized beams for various boundary conditions based on the strain gradient elasticity theory, Archive of Applied Mechanics, 82, 3, 423-443
  • 4. Akgoz B., Civalek ¨ O. ¨ , 2013, A size-dependent shear deformation beam model based on the strain gradient elasticity theory, International Journal of Engineering Science, 70, 1-14
  • 5. Ansari R., Gholami R., Rouhi H., 2012, Vibration analysis of single-walled carbon nanotubes using different gradient elasticity theories, Composites: Part B, 43, 2985-2989
  • 6. Askes H., Aifantis E.C., 2009, Gradient elasticity and flexural wave dispersion in carbon nanotubes, Physical Review B: Condensed Matter and Materials Physics, 80, 195412
  • 7. Aydogdu, M., 2009, A general nonlocal beam theory: its application to nanobeam bending, buckling and vibration, Physica E: Low-dimensional Systems and Nanostructures, 41, 9, 1651-1655
  • 8. Bak J.H., Kim Y.D., Hong S.S., Lee B.Y., Lee S.R., Jang J.H., Park Y.D., 2008, Highfrequency micromechanical resonators from aluminium–carbon nanotube nanolaminates, Nature Materials, 7, 6, 459-463
  • 9. Baughman R.H., Cui C., Zakhidov A.A., Iqbal Z., Barisci J.N., Spinks G.M., Kertesz M., 1999, Carbon nanotube actuators, Science, 284, 5418, 1340-1344
  • 10. Chopra S., McGuire K., Gothard N., Rao A.M., Pham A., 2003, Selective gas detection using a carbon nanotube sensor, Applied Physics Letters, 83, 11, 2280-2282
  • 11. De Heer W.A., Chatelain A., Ugarte D., 1995, A carbon nanotube field-emission electron source, Science, 270, 5239, 1179-1180
  • 12. Eringen A.C., 1983, On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves, Journal of Applied Physics, 54, 9, 4703-4710
  • 13. Eringen A.C., Edelen D.G.B., 1972, On nonlocal elasticity, International Journal of Engineering Science, 10, 3, 233-248
  • 14. Hosseini-Ara R., Mirdamadi H.R., Khademyzadeh H., 2012, Buckling analysis of short carbon nanotubes based on a novel Timoshenko beam model, Journal of Theoretical and Applied Mechanics, 50, 4, 975-986
  • 15. Huu-Tai T., 2012, A nonlocal beam theory for bending, buckling, and vibration of nanobeams, International Journal of Engineering Science, 52, 56-64
  • 16. Kong S., Zhou S., Nie Z., Wang K., 2009, Static and dynamic analysis of micro beams based on strain gradient elasticity theory, International Journal of Engineering Science, 47, 4, 487-498
  • 17. Lam D.C.C., Yang F., Chong A.C.M., Wang J., Tong P., 2003, Experiments and theory in strain gradient elasticity, Journal of the Mechanics and Physics of Solids, 51, 8, 1477-1508
  • 18. Li C., Chou T.W., 2003, A structural mechanics approach for the analysis of carbon nanotubes, International Journal of Solids and Structures, 40, 10, 2487-2499
  • 19. Liu Y.P., Reddy J.N., 2011, A nonlocal curved beam model based on a modified couple stress theory, International Journal of Structural Stability and Dynamics, 11, 3, 495-512
  • 20. Muc A., 2011, Modelling of carbon nanotubes behavior with the use of a thin shell theory, Journal of Theoretical and Applied Mechanics, 49, 2, 531-540
  • 21. Murmu T., Adhikari S., 2011, Axial instability of double-nanobeam-systems, Physics Letters A, 375, 3, 601-608
  • 22. Murmu T., Adhikari S., 2010a, Nonlocal transverse vibration of double-nanobeam-systems, Journal of Applied Physics, 108, 8, 083514
  • 23. Murmu T., Adhikari S., 2010b, Nonlocal effects in the longitudinal vibration of double-nanorod systems, Physica E: Low-dimensional Systems and Nanostructures, 43, 1, 415-422
  • 24. Murmu, T., Pradhan S.C., 2009, Small-scale effect on the vibration of nonuniformnanocantilever based on nonlocal elasticity theory, Physica E: Low-dimensional Systems and Nanostructures, 41, 8, 1451-1456
  • 25. Nishio M., Sawaya S., Akita S., Nakayama Y., 2005, Carbon nanotube oscillators toward zeptogram detection, Applied Physics Letters, 86, 13, 133111
  • 26. Peddieson J., Buchanan G.R., McNitt R.P., 2003, Application of nonlocal continuum models to nanotechnology, International Journal of Engineering Science, 41, 305-312
  • 27. Reddy J.N., 2007, Nonlocal theories for buckling bending and vibration of beams, International Journal of Engineering Science, 45, 288-307
  • 28. Reddy J.N., Pang S.D., 2008, Nonlocal continuum theories of beams for the analysis of carbon nanotubes, Journal of Applied Physics, 103, 023511
  • 29. Ruoff R.S., Qian D., Liu W.K., 2003, Mechanical properties of carbon nanotubes: theoretical predictions and experimental measurements, Comptes Rendus Physique, 4, 9, 993-1008
  • 30. Saito Y., Uemura S., 2000, Field emission from carbon nanotubes and its application to electron sources, Carbon, 38, 2, 169-182
  • 31. Salvetat J.P., Bonard J.M., Thomson N.H., Kulik A.J., Forro L., Benoit W., Zuppiroli L., 1999, Mechanical properties of carbon nanotubes, Applied Physics A, 69, 3, 255-260
  • 32. Spitalsky Z., Tasis D., Papagelis K., Galiotis C., 2010, Carbon nanotube-polymer composites: chemistry, processing, mechanical and electrical properties, Progress in Polymer Science, 35, 3, 357-401
  • 33. Wang B.L., Wang K.F., 2013, Vibration analysis of embedded nanotubes using nonlocal continuum theory, Composites: Part B, 47, 96-101
  • 34. Wang Q., Varadan V.K., 2006, Vibration of carbon nanotubes studied using nonlocal continuum mechanics, Smart Materials and Structures, 15, 659-666
  • 35. Wang Q., Wang C.M., 2007, The constitutive relation and small scale parameter of nonlocal continuum mechanics for modelling carbon nanotubes, Nanotechnology, 18, 7, 075702
  • 36. Yas M.H., Samadi N., 2012, Free vibrations and buckling analysis of carbon nanotube-reinforced composite Timoshenko beams on elastic foundation, International Journal of Pressure Vessels and Piping, 98, 119-128
  • 37. Zhang S., Mielke S.L., Khare R., Troya D., Ruoff R.S., Schatz G.C., Belytschko T., 2005, Mechanics of defects in carbon nanotubes: atomistic and multiscale simulations, Physical Review B, 71, 11, 115403
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5c075b0d-e2ad-49a5-a002-b43481e0abfe
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.