PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Influence of Quercetin-Ferrum Complex on the Biochemical Profile of Berry Crops In Vitro

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The purpose of the research was to study the effect of the quercetin-Ferrum complex on the synthesis of plastid pigments and secondary metabolites in berry crops. In the research, biotechnological, physiological, biochemical and statistical methods were used. The ability of quercetin, which is one of the most common flavonol aglycons, to create a chelated complex with Fe2+ and regulate physiological processes associated with oxidation-reduction reactions, synthesis of pigments and metal enzymes when being a supplement of nutrient medium is shown. With the addition of quercetin-Ferrum complex with a fraction of Fe2+ in a concentration equivalent to the base nutrient media composition optimized for the cultivation of berry crops in vitro, regenerated plants showed a sufficiently high regeneration capacity. Based on the indicators of the content of chlorophylls and carotenoids in leaves, the physiological availability of Ferrum in the quercetin-Ferrum complex was established. The concentration of chlorophylls a and b in raspberry and strawberry leaves increased by 20−25%, and the content of carotenoids increased by 30−40%. On the contrary, in black currant, the content of chlorophyll a in leaves decreased by 18−20% and chlorophyll b by almost 75%. It was found that quercetin is a biologically active phenolic chelating agent capable of chemically binding Fe2+ ions and participating in the regulation of growth processes, in particular in the induction of callusogenesis. Metal-flavonol complex is advisable to use in micro clonal reproduction of plants sensitive to oxidative stress in conditions of Fe2+ ions deficiency under the condition of individual selection of the components of the chelate complex and adjusting its concentration in the nutrient medium.
Twórcy
  • National University of Life and Environmental Sciences of Ukraine, 15 Heroiv Oborony, Kyiv, 03041, Ukraine
  • National University of Life and Environmental Sciences of Ukraine, 15 Heroiv Oborony, Kyiv, 03041, Ukraine
  • National University of Life and Environmental Sciences of Ukraine, 15 Heroiv Oborony, Kyiv, 03041, Ukraine
  • Ukrainian Institute for Plant Variety Examination, 15 Henerala Rodimtseva, Kyiv, 03041, Ukraine
  • Ltd Agronomica, 16, Shevchenka, Fliarkivka village, Cherkasy region, 20822, Ukraine
Bibliografia
  • 1. Ahmad B.A., Mohd K.S., Abdurrazak M., Rao U.M., Zin T. 2015. Phytochemical screening, antioxidant activity of pure syringin in comparison to various solvents extracts of Musa paradisiaca (banana) (fruit and flower) and total phenolic contents. Int J Pharm Pharm Sci, 7(5), 242–247.
  • 2. Albuquerque B.R., Heleno S.A., Oliveira M.B.P., Barros L., Ferreira I.C. 2021. Phenolic compounds: Current industrial applications, limitations and future challenges. Food & function, 12(1), 14–29. https://doi.org/10.1039/d0fo02324h
  • 3. Amer A. 2018. Biotechnology approaches for in vitro production of flavonoids. J. Microbiol. Biotech. Food Sci., 7(5), 457−468. https://doi.org/10.15414/jmbfs.2018.7.5.457‑468
  • 4. Cherrak S.A., Mokhtari-Soulimane N., Berroukeche F., Bensenane B., Cherbonnel A., Merzouk H., Elhabiri M. 2016. In vitro antioxidant versus metal ion chelating properties of flavonoids: A structureactivity investigation. PloS one, 11(10), e0165575. https://doi.org/10.1371/journal.pone.0165575
  • 5. Da Silva W.M.B., de Oliveira Pinheiro S., Alves D.R., de Menezes J.E.S.A., Magalhães F.E.A., Silva F.C.O., de Morais S.M. 2020. Synthesis of quercetin-metal complexes, in vitro and in silico anticholinesterase and antioxidant evaluation, and in vivo toxicological and anxiolitic activities. Neurotoxicity Research, 37, 893–903. https://doi.org/10.1007/s12640–019–00142–7
  • 6. Dias M.C., Pinto D.C.G.A., Silva A.M.S. 2021. Plant Flavonoids: Chemical Characteristics and Biological Activity. Molecules, 26, 5377. https://doi.org/10.3390/molecules26175377
  • 7. Gayomba S.R., Watkins J.M., Muday G.K. 2017. Flavonols regulate plant growth and development through regulation of auxin transport and cellular redox status. Recent Advances in Polyphenol Research, 143–170. https://doi.org/10.1002/9781118883303.ch7
  • 8. Guo M., Perez C., Wei Y., Rapoza E., Su G., Bou-Abdallah F., Chasteen N.D. 2007. Iron-binding properties of plant phenolics and cranberry’s bioeffects. Dalton Trans., 4951–4961. https://doi.org/10.1039/b705136k
  • 9. Hayat M., Abbas M., Munir F., Hayat M.-Q., Keyani R., Amir R. 2017. Potential of plant flavonoids in pharmaceutics and nutraceutics. J. Biomol. Biochem, 1(1), 12–17.
  • 10. Heldt H.W., Piechulla B. 2021. Plant biochemistry (5th Edition). Academic Press.
  • 11. Jarret D.A., Morris J., Cullen D.W., Gordon S.L., Verrall S.R., Milne L., Hedley P.E., Allwood J.W., Brennan R.M., Hancock R.D. 2018. A transcript and metabolite atlas of blackcurrant fruit development highlights hormonal regulation and reveals the role of key transcription factors. In plant science, 9, 1235. https://doi.org/10.3389/fpls.2018.01235
  • 12. Kejík Z., Kaplánek R., Masařík M., Babula P., Matkowski A., Filipenský P., Jakubek M. 2021. Iron complexes of flavonoids-antioxidant capacity and beyond. International journal of molecular sciences, 22(2), 646. https://doi.org/10.3390/ijms22020646
  • 13. Klessig D.F., Choi H.W., Dempsey D.M.A. 2018. Systemic acquired resistance and salicylic acid: past, present, and future. Molecular plant-microbe interactions, 31(9), 871–888. https://doi.org/10.1094/MPMI-03–18–0067-CR
  • 14. Klyachenko O., Likhanov A.F., Grakhov V. 2018. Tissue and biochemical barriers of sugar beet (Beta vulgaris L. provar. altissima Doell.) pericarp. Journal of Microbiology, Biotechnology and Food Sciences, 7(7), 663–667. https://doi.org/10.15414/jmbfs.2018.8.1.663–667
  • 15. Li J., Yang Y., Chai M., Ren M., Yuan J., Yang W., Fan H. 2020. Gibberellins modulate local auxin biosynthesis and polar auxin transport by negatively affecting flavonoid biosynthesis in the root tips of rice. Plant Science, 298, 110545. https://doi.org/10.1016/j.plantsci.2020.110545
  • 16. Makarenko O., Levitskij A. 2013. Physiological functions of flavonoids in plants. Physiology and biochemistry of cultivated plants, 45(2), 100–112.
  • 17. Mathesius U. 2018. Flavonoid functions in plants and their interactions with other organisms. Plants, 7(2), 30. https://doi.org/10.3390/plants7020030
  • 18. Melnychuk M.D., Klyachenko O.L. 2014. Biotechnology in the agricultural sector. Tutorial for students of higher educational institutions. Nilan, Vinnytsia.
  • 19. Nguyen T.L.A., Bhattacharya D. 2022. Antimicrobial Activity of Quercetin: An Approach to Its Mechanistic Principle. Molecules, 27, 2494. https://doi.org/10.3390/molecules27082494
  • 20. Oldroyd G.E. 2013. Speak, friend, and enter: signalling systems that promote beneficial symbiotic associations in plants. Nature Reviews Microbiology, 11(4), 252–263. https://doi.org/10.1038/nrmicro2990
  • 21. Panche A.N., Diwan A.D., Chandra S.R. 2016. Flavonoids: an overview. Journal of nutritional science, 5, e47. https://doi.org/10.1017/jns.2016.41
  • 22. Perez-Vizcaino F., Fraga C.G. 2018. Research trends in flavonoids and health. Archives of biochemistry and biophysics, 646, 107–112. https://doi.org/10.1016/j.abb.2018.03.022
  • 23. Petchsomrit A., Chanthathamrongsiri N., Jiangseubchatveera N., Manmuan S., Leelakanok N., Plianwong S., Sirirak T. 2023. Extraction, antioxidant activity, and hydrogel formulation of marine Cladophora glomerata. Algal Research, 71, 103011. https://doi.org/10.1016/j.algal.2023.103011
  • 24. Rothwell J. A., Knaze V., Zamora-Ros R. 2017. Polyphenols: Dietary assessment and role in the prevention of cancers. Current Opinion in Clinical Nutrition and Metabolic Care, 20(6), 512–521. https://doi.org/10.1097/MCO.0000000000000424
  • 25. Singh P., Arif Y., Bajguz A., Hayat S. 2021. The role of quercetin in plants. Plant Physiology and Biochemistry, 166, 10–19. https://doi.org/10.1016/j.plaphy.2021.05.023.
  • 26. Yin R., Han K., Heller W., Albert A., Dobrev P.I., Zažímalová E., Schäffner A.R. 2014. Kaempferol 3- O- rhamnoside- 7- O- rhamnoside is an endogenous flavonol inhibitor of polar auxin transport in Arabidopsis shoots. New Phytologist, 201(2), 466–475. https://doi.org/10.1111/nph.12558
  • 27. Zhao C., Wang F., Lian Y., Xiao H., Zheng, J. 2020. Biosynthesis of citrus flavonoids and their health effects. Critical reviews in food science and nutrition, 60(4), 566–583. https://doi.org/10.1080/10408398.2018.1544885
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5c02ef78-0f03-4909-8ec3-a0bc2f46feac
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.