PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The influence of holmium on catalytic properties of Fe or Cu-modified vermiculites

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Natural layered clay, vermiculite, was modified and tested as catalyst for the selective catalytic reduction of NOx with ammonia (NH3-SCR). Its modification included the application of the blowing agent (azodicarbonamide), acid treatment and pillaring with Al2O3. Active phase (transition metals: Cu or Fe) was introduced via impregnation. The obtained materials were characterized by N2 sorption (texture), XRD (structure), DR-UV-Vis (oxidation state and aggregation of the active phase), H2-TPR (reducibility of the active phase), in situ DRIFTS (types of adsorbed species due to contact of the sample NH3) and NH3-TPD (type/strength of the acidic sites). The initial modification procedures (treatment with azodicarboamide) resulted in the increase of specific surface area of vermiculite. The introduction of transition metal ions provided a significant amount of acidic sites. The promoting impact of holmium was confirmed by the increased strength of the sites. The highest catalytic activity was exhibited by the sample Fe-containing vermiculite and doped with Ho.
Słowa kluczowe
Rocznik
Strony
1484--1495
Opis fizyczny
Bibliogr. 63 poz., rys., tab., wykr.
Twórcy
  • AGH University of Science and Technology, Faculty of Energy and Fuels, Al. Mickiewicza 30, PL-30059, Kraków, Poland
  • AGH University of Science and Technology, Faculty of Energy and Fuels, Al. Mickiewicza 30, PL-30059, Kraków, Poland
autor
  • AGH University of Science and Technology, Faculty of Energy and Fuels, Al. Mickiewicza 30, PL-30059, Kraków, Poland
  • AGH University of Science and Technology, Faculty of Energy and Fuels, Al. Mickiewicza 30, PL-30059, Kraków, Poland
  • Institute of Chemical Technology, Universität Leipzig, Linnéstr. 3, 04103 Leipzig, Germany
  • Institute of Chemical Technology, Universität Leipzig, Linnéstr. 3, 04103 Leipzig, Germany
autor
  • AGH University of Science and Technology, Faculty of Energy and Fuels, Al. Mickiewicza 30, PL-30059, Kraków, Poland
Bibliografia
  • ALI, F., REINERT, L., LEVÊQUE, J. M., DUCLAUX, L., MULLER, F., SAEED, S., SHAH, S. S., 2014.Effect of sonication conditions: Solvent, time, temperature and reactor type on the preparation of micron sized vermiculite particles. Ultrason.Sonochem.21, 1002–1009.
  • BARAMA, S., DUPEYRAT-BATIOT, C., CAPRON,M., BORDES-RICHARD,E., BAKHTI-MOHAMMEDI, O., 2009.Catalytic properties of Rh, Ni, Pd and Ce supported on Al-pillared montmorillonites in dry reforming of methane. Catal. Today 141, 385–392.
  • BERGAYA, F., AOUAD, A., MANDALIA, T., 2006. Chapter 7.5 Pillared Clays and Clay Minerals. In: Bergaya, F., B.K. G. Theng & G. Lagaly (eds.), Handbook of Clay Science., Developments in Clay Science. Elsevier, Vol. 1pp. 393–421.
  • BIN, F., SONG, C., LV, G., SONG, J., WU,S., LI, X.,2014.Selective catalytic reduction of nitric oxide with ammonia over zirconium-doped copper/ZSM-5 catalysts. Appl. Catal. B: Environ.150–151, 532–543.
  • CAI, H., LIU, G., LÜ, W., LI, X., YU, L., LI, D., 2008. Effect of Ho-doping on photocatalytic activityof nanosized TiO2 catalyst. J. Rare Earths 26, 71–75.
  • CARJA, G., KAMESHIMA, Y., OKADA, K., MADHUSOODANA, C. D., 2007. Mn-Ce/ZSM5 as a new superior catalyst for NO reduction with NH3. Appl. Catal. B: Environ. 73, 60–64.
  • CHMIELARZ, L., KUŚTROWSKI, P., ZBROJA, M., RAFALSKA-ŁASOCHA, A., DUDEK, B., DZIEMBAJ, R., 2003. SCR of NO by NH3 on alumina or titania-pillared montmorillonite various modified with Cu or Co: Part I. General characterization and catalysts screening. Appl. Catal. B: Environ.45, 103–116.
  • CHMIELARZ, L., KUŚTROWSKI, P., ZBROJA, M., GIL-KNAP, B., DATKA, J., DZIEMBAJ, R., 2004. SCR of NO by NH3 on alumina or titania pillared montmorillonite modified with Cu or Co: Part II. Temperature programmed studies. Appl. Catal. B: Environ.53, 47–61.
  • CHMIELARZ, L., KUŚTROWSKI, P., PIWOWARSKA, Z., DUDEK, B., GIL, B., MICHALIK, M., 2009. Montmorillonite, vermiculite and saponite based porous clay heterostructures modified with transition metals as catalysts for the DeNOx process. Appl. Catal. B: Environ. 88, 331–340.
  • CHMIELARZ, L., KOWALCZYK, A., MICHALIK, M., DUDEK, B., PIWOWARSKA, Z., MATUSIEWICZ, A., 2010. Acid-activated vermiculites and phlogophites as catalysts for the DeNOx process. Appl. Clay Sci. 49, 156–162.
  • CHMIELARZ, L., WOJCIECHOWSKA, M., RUTKOWSKA, M., ADAMSKI, A.,WȨGRZYN, A., KOWALCZYK, A., DUDEK, B., BOROŃ, P., MICHALIK, M., MATUSIEWICZ, A.,2012. Acid-activated vermiculites as catalysts of the DeNOx process. Catal. Today 191, 25–31.
  • DEL REY-PEREZ-CABALLERO, F.J., PONCELET,G., 2000. Microporous 18 Å Al-pillared vermiculites: Preparation and characterization. Micropor. Mesopor. Mater. 37, 313–327.
  • DRELICH, J., LI, B.,BOWEN, P., HWANG, J.Y., MILLS, O., HOFFMAN, D.,2011.Vermiculite decorated with copper nanoparticles: Novel antibacterial hybrid material. Appl. Surf. Sci. 257, 9435–9443.
  • DZWIGAJ, S., JANAS, J., ROJEK, W., STIEVANO, L., WAGNER, F. E., AVERSENG, F., CHE, M., 2009. Effect of iron impurities on the catalytic activity of BEA, MOR and MFI zeolites in the SCR of NO by ethanol. Appl. Catal. B: Environ. 86, 45–52.
  • GAIGNEAUX, E., DE VOS, D.E., JACOBS, P.A., MARTENS, J.A., RUIZ, P., PONCELET, G., GRANGE, P.,2002. Scientific Bases for the Preparation of Heterogeneous Catalysts. Studies in Surface Science and Catalysis. Elsevier Science.
  • GÓRA-MAREK, K., BRYLEWSKA, K., TARACH, K. A., RUTKOWSKA, M., JABŁOŃSKA, M., CHOI, M., CHMIELARZ, L., 2015. IR studies of Fe modified ZSM-5 zeolites of diverse mesopore topologies in the terms of their catalytic performance in NH3-SCR and NH3-SCO processes. Appl. Catal. B: Environ. 179, 589–598.
  • GOSCIANSKA, J., BAZIN, P., MARIE, O., DATURI, M., SOBCZAK, I., ZIOLEK, M., 2007. Pt and Nb species on various supports: An alternative to current materials for NOx removal. Catal. Today 119, 78–82.
  • GOSCIANSKA, J., ZIOLEK, M., 2008. Adsorption and interaction of NO, C3H6 and O2 on Pt, Zr, Nb-MCM-41-FTIR study. Catal. Today 137, 197–202.
  • GRZYBEK, T., 2007. Layered clays as SCR deNOx catalysts. Catal. Today 119, 125–132.
  • HAMMERSHØI, P. S., JENSEN, A. D., JANSSENS, T.V.W., 2018. Impact of SO2-poisoning over the lifetime of a Cu-CHA catalyst for NH3-SCR. Appl. Catal. B: Environ. 238, 104–110.
  • HASHEM, F. S., AMIN, M. S., EL-GAMAL, S. M. A., 2015. Chemical activation of vermiculite to produce highly efficient material for Pb2+ and Cd2+ removal. Appl. Clay Sci. 115, 189–200.
  • HUANG, T.-J., ZHANG, Y.-P., ZHUANG, K., LU, B., ZHU, Y.-W., SHEN, K., 2018. Preparation of honeycombed holmium-modified Fe-Mn/TiO2 catalyst and its performance in the low temperature selective catalytic reduction of NOx. J. Fuel Chem. Technol. 46, 319–327.
  • JABŁOŃSKA, M., CHMIELARZ, L., WĘGRZYN, A., GÓRA-MAREK, K., PIWOWARSKA, Z., WITKOWSKI, S., BIDZIŃSKA, E., KUŚTROWSKI, P., WACH, A., MAJDA, D.,2015. Hydrotalcite derived (Cu, Mn)–Mg–Al metal oxide systems doped with palladium as catalysts for low-temperature methanol incineration. Appl. Clay Sci. 114, 273–282.
  • KLINIK, J., SAMOJEDEN, B., GRZYBEK, T., SUPRUN, W., PAPP, H., GLÄSER, R., 2011. Nitrogen promoted activated carbons as DeNOx catalysts. 2. The influence of water on the catalytic performance. Catal. Today 176, 303–308.
  • KOMADEL, P., 2016: Acid activated clays: Materials in continuous demand. Appl. Clay Sci. 131, 84–99.
  • KOWALCZYK, A., ŚWIĘS, A., GIL, B., RUTKOWSKA, M., PIWOWARSKA, Z., BORCUCH, A., MICHALIK,M., CHMIELARZ, L., 2018. Effective catalysts for the low-temperature NH3-SCR process based on MCM-41 modified with copper by template ion-exchange (TIE) method. Appl. Catal. B: Environ. 237, 927–937.
  • KUDŁA, S., LIPIŃSKI, W., SZULC, R., 2007. Sposób modyfikacji glinokrzemianów warstwowych (Patent PL 213782 B1). Renata Fiszer, Polska.
  • LI, G., WANG, B., WANG, H., MA, J., XU, W.Q., LI, Y., HAN, Y., SUN, Q.,2018. Fe and/or Mn oxides supported on fly ash-derived SBA-15 for low-temperature NH 3 -SCR. Catal. Commun. 108, 82–87.
  • LI, J., CHANG, H., MA, L., HAO, J., YANG, R. T., 2011. Low-temperature selective catalytic reduction of NOx with NH3 over metal oxide and zeolite catalysts-A review. Catal. Today 175, 147–156.
  • LOILAND, J. A., LOBO,R. F., 2014. Low temperature catalytic NO oxidation over microporous materials. J. Catal. 311, 412–423.
  • LONG, R. Q., YANG, R. T., 1999: Selective catalytic reduction of nitrogen oxides by ammonia over Fe3+-exchanged TiO2-pillared clay catalysts. J. Catal. 186, 254–268.
  • MACINA, D., PIWOWARSKA, Z., GÓRA-MAREK, K., TARACH, K., RUTKOWSKA, M., GIRMAN, V., BŁACHOWSKI, A., CHMIELARZ, L., 2016. SBA-15 loaded with iron by various methods as catalyst for DeNOx process. Mater. Res. Bull. 78, 72–82.
  • MALANDRINO, M., ABOLLINO, O., BUOSO, S.,GIACOMINO, A., LA GIOIA, C., MENTASTI, E.,2011. Accumulation of heavy metals from contaminated soil to plants and evaluation of soil remediation by vermiculite. Chemosphere 82, 169–178.
  • MEKHEMER, G.A.H., 2004.Surface acid-base properties of holmium oxide catalyst: In situ infrared spectroscopy. Appl. Catal. A: General 275, 1–7.
  • MIHAYLOV M., IVANOVA E., CHAKAROVA K., NOVACHKA P., HADJIIVANOV K., 2011. Reduced iron sites in Fe–BEA and Fe–ZSM-5 zeolites: FTIR study of CO adsorption and 12C16O–13C18O co-adsorption. Appl. Catal. A 391 (1-2), 3-10.
  • MOTAK, M., 2008: Montmorillonites modified with polymer and promoted with copper as DeNOx catalysts. Catal. Today 137, 247–252.
  • MOTAK, M., KUTERASIŃSKI, Ł., DA COSTA, P., SAMOJEDEN, B., 2015. Catalytic activity of layered aluminosilicates for VOC oxidation in the presence of NOx. Comptes Rendus Chimie 18, 1106–1113.
  • PÂRVULESCU, V. I., PÂRVULESCU, V., FRUNZA, L.,GRECU, N., ENACHE, C., ANGELESCU, E., 2010. Selective hydrogenation of styrene on Pd-Ho/γAl2O3 and Pd/γAl2O3 catalysts. Bulletin des Sociétés Chimiques Belges 102.
  • RASHIDI, N. A., YUSUP, S., 2016. An overview of activated carbons utilization for the post-combustion carbon dioxide capture. J. CO2 Utilization 13, 1–16.
  • RUTKOWSKA, M., PACIA, I., BASĄG, S., KOWALCZYK, A., PIWOWARSKA, Z., DUDA, M., TARACH, K.A., GÓRA-MAREK, K., MICHALIK, M., DÍAZ, U., CHMIELARZ, L., 2017. Catalytic performance of commercial Cu-ZSM-5 zeolite modified by desilication in NH3-SCR and NH3-SCO processes. Micropor. Mesopor. Mater.246, 193–206.
  • RUTKOWSKA, M., BORCUCH, A., MARZEC, A., KOWALCZYK, A., SAMOJEDEN, B., MORENO, J.M., DÍAZ, U., CHMIELARZ, L.,2018.Influence of iron aggregation on the catalytic performance of desilicated MFI in the DeNOx process. Micropor. Mesopor. Mater.(in press) (10.1016/j.micromeso.2018.09.015)
  • SAMOJEDEN, B., KLINIK, J., GRZYBEK, T., PAPP, H., 2008. Charakterystyka modyfikowanych węgli aktywnych jako katalizatorów w reakcji DeNOx (The characterization of modified active carbons for DeNOx reaction). Gospodarka Surowcami Mineralnymi 24, 295–303.
  • SAMOJEDEN, B., GRZYBEK, T., 2017a.The influence of nitrogen groups introduced onto activated carbons by high-or low-temperature NH3 treatment on SO2 sorption capacity. Adsorpt. Sci. Technol. 35, 572–581.
  • SAMOJEDEN, B., MOŻDŻEŃ, M., 2017b. The influence of amount of copper of modified vermiculites on catalytic properties in SCR-NH3. E3S Web of Conferences 2020, 1–10.
  • SANTOS, S.S.G., SILVA, H.R.M., DE SOUZA,A.G., ALVES, A.P.M., DA SILVA FILHO, E. C., FONSECA, M. G., 2015. Acid-leached mixed vermiculites obtained by treatment with nitric acid. Appl. Clay Sci. 104, 286–294.
  • STAWIŃSKI, W., FREITAS, O., CHMIELARZ, L., WĘGRZYN, A., KOMĘDERA, K., BŁACHOWSKI, A., FIGUEIREDO, S.,2016. The influence of acid treatments over vermiculite based material as adsorbent for cationic textile dyestuffs. Chemosphere 153, 115–129.
  • STAWIŃSKI, W., WĘGRZYN, A., DAŃKO, T., FREITAS, O., FIGUEIREDO, S., CHMIELARZ, L., 2017. Acid-base treated vermiculite as high performance adsorbent: Insights into the mechanism of cationic dyes adsorption, regeneration, recyclability and stability studies. Chemosphere 173, 107–115.
  • SULTANA, A., SASAKI,M., HAMADA, H.,2012. Influence of support on the activity of Mn supported catalysts for SCR of NO with ammonia. Catal. Today 185, 284–289.
  • SUVOROV, S. A., SKURIKHIN, V. V.,2003. Vermiculite —a promising material for high-temperature heat insulators. Refractor. Industr. Ceramics 44, 186–193.
  • TEMUUJIN, J., OKADA, K., MACKENZIE, K. J., 2003. Preparation of porous silica from vermiculite by selective leaching. Appl. Clay Sci. 22, 187–195.
  • THE EUROPEAN COMMISION, 2015.Commission Delegated Regulation (EU) 2016/1400. Official Journal of the European Union.
  • THE EUROPEAN PARLIAMENT AND THE COUNCIL OF THE EUROPEAN UNION, 2010. Directive 2010/75/EU of the European Parliament and of the Council of 24 November 2010 on industrial emissions (integrated pollution prevention and control) Text with EEA relevance.
  • THIRUPATHI, B., SMIRNIOTIS, P. G., 2011.Co-doping a metal (Cr, Fe, Co, Ni, Cu, Zn, Ce, and Zr) on Mn/TiO2 catalyst and its effect on the selective reduction of NO with NH3 at low-temperatures. Appl. Catal. B: Environ. 110, 195–206.
  • THIRUPATHI, B., SMIRNIOTIS, P. G., 2012. Nickel-doped Mn/TiO2 as an efficient catalyst for the low-temperature SCR of NO with NH3: Catalytic evaluation and characterizations. J. Catal. 288, 74–83.
  • WANG, Z., LI, Q., WANG, L., SHANGGUAN,W., 2012. Simultaneous catalytic removal of NOxand soot particulates over CuMgAl hydrotalcites derived mixed metal oxides. Appl. Clay Sci. 55, 125–130.
  • WANG, Z., KUANG, H.,ZHANG, J., CHU, L.,JI, Y., 2019. Nitrogen oxide removal by coal-based activated carbon for a marine diesel engine. Appl. Sci.9(8), 1656 (10.3390/app9081656).
  • WICKRAMARATNE, N. P.,JARONIEC, M., 2014. Tailoring microporosity and nitrogen content in carbons for achieving high uptake of CO2 at ambient conditions. Adsorption 20, 287–293.
  • WORCH, D., SUPRUN, W., GLÄSER, R., 2013. Fe-and Cu-oxides supported on γ-Al2O3 as catalysts for the selective catalytic reduction of NO with ethanol. Part I: catalyst preparation, characterization, and activity. Chem. Pap. 68, 1228–1239.
  • YANG, L., JIA, Y., CHENG, J., WU, X.,HE, J., LIU, F.,2019. Deactivation mechanism of activated carbon supported copper oxide SCR catalysts in C 2 H 4 reductant. The Canadian J. Chem. Eng. 97 (10), 2708-2716.
  • ZHANG, T., LIU, J., WANG, D., ZHAO, Z., WEI, Y., CHENG, K., JIANG, G., DUAN, A.,2014. Selective catalytic reduction of NO with NH3 over HZSM-5-supported Fe–Cu nanocomposite catalysts: The Fe–Cu bimetallic effect. Appl. Catal. B: Environ.148–149, 520–531.
  • ZHOU, W., HE, Y., 2012: Ho/TiO2 nanowires heterogeneous catalyst with enhanced photocatalytic properties by hydrothermal synthesis method. Chem. Eng. J. 179, 412–416.
  • ZHU, Y., ZHANG, Y., XIAO, R., HUANG, T.,SHEN, K.,2017. Novel holmium-modified Fe-Mn/TiO2 catalysts with a broad temperature window and high sulfur dioxide tolerance for low-temperature SCR. Catal. Commun. 88, 64–67.
  • ZIEMIAŃSKI, P., KAŁAHURSKA, K., SAMOJEDEN, B., 2017: Selective catalytic reduction of NO with NH3 on mixed alumina–iron (III) oxide pillared montmorillonite “Cheto” Arizona, modified with hexamminecobalt (III) chloride. Adsorpt.Sci.Technol. 35, 825–833.
Uwagi
1. The research was financed by AGH Grant 16.16.210.476.
2. Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5bfb3b69-298d-489d-8666-5b1c9a28f345
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.