PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Optical roughness calculation for material structural analysis of energy structure applications under DC plasma processes

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Surface qualities make aluminium a low-DC plasma interaction candidate. Aluminum for energy system structure building is studied experimentally, with observations obtained. Aluminum is cheap and frequently utilized in aerospace applications. The selection of materials for new applications of thermonuclear fusion energy, such as Tokamak reactor walls and fusion-based spaceship thrust structures, is important to decide in the design phase. In this study, an experimental setup application is created with low DC-type He plasma ions processed on aluminium pellet surfaces. The physical changes of the aluminium pellet material as an example of an energy structure surface are analysed under a scanned array microscope and 3D surface plots to detect optical roughness attributes.
Twórcy
autor
  • Graduate School of Natural and Applied Sciences, Ankara Yıldırım Beyazit University Ankara, Türkiye
Bibliografia
  • [1] Xometr Inc., Aluminum: History, characteristics, types, properties and applications, (2023). https://doi.org/https://www.xometry.com/resources/materials/what-is-aluminum/.
  • [2] S. Pirizadhejrandoost, M. Bakhshzad Mahmoudi, E. Ahmadi, M. Moradshahi, The corrosion behawior of carburized aluminum using DC plasma, J. Metall. 2012 (2012) 1–4. https://doi.org/10.1155/2012/258021.
  • [3] IAEA, Atomic and Plasma Material Interaction Data for Fusion, 13 (2007).
  • [4] R. Alba, R. Iglesias, M.Á. Cerdeira, Materials to be used in future magnetic confinement fusion reactors: A review, Materials (Basel). 15 (2022) 6591. https://doi.org/10.3390/ma15196591.
  • [5] A. Pahsa, Modelling plasma material interactions in spacecraft magnetic fusion devices, in: 2019 9th Int. Conf. Recent Adv. Sp. Technol., IEEE, 2019: pp. 655–662. https://doi.org/10.1109/RAST.2019.8767780.
  • [6] IAEA, Lifetime predictions for the first wall and blanket structure of fusion reactors, (1985).
  • [7] J. Rafelski, S.E. Jones, Cold nuclear fusion, Sci. Am. 257 (1987) 84–89. https://doi.org/10.1038/scientificamerican0787-84.
  • [8] L. Rajablou, S.M. Motevalli, F. Fadaei, Study of alpha particle concentration effects as the ash of deuterium-tritium fusion reaction on ignition criteria, Phys. Scr. 97 (2022) 095601. https://doi.org/10.1088/1402-4896/ac831a.
  • [9] L. Conde, An introduction to langmuir probe diagnostics of plasmas, (2011) Figure-2, p.3. http://plasmalab.aero.upm.es/~lcl/PlasmaProbes/Probes-2010-2.pdf.
  • [10] ASME B46.1:2019, Surface Texture (Surface Roughness, Waviness, and Lay)”, NS-996086, Technical Standards ASME, (2020).
  • [11] K. Wojczykowski, New development in corrosion testing: Theory, methods and standards, AESF Found. Plat. Surf. Finish. (2011) 98.
  • [12] IAEA, M. Kikuchi, K. Lackner, M.Q. Tran, Fusion physics, (2012) 20–21.
  • [13] J.P. Freidberg, F.J. Mangiarotti, J. Minervini, Designing a tokamak fusion reactor - How does plasma physics fit in?, Phys. Plasmas. 22 (2015). https://doi.org/10.1063/1.4923266.
  • [14] K. Miyamoto, Fundamentals of plasma physics and controlled fusion, (2011) 1–21. https://doi.org/10.1088/0029-5515/38/4/701.
  • [15] C.M. Braams, P.E. Stott, Nuclear fusion: half a century of magnetic confinement research, Plasma Phys. Control. Fusion. 44 (2002) 1767–1767. https://doi.org/10.1088/0741-3335/44/8/701.
  • [16] Y.A. Chang, G. Herdrich, C. Syring, Development of inertial electrostatic confinement in IRS, in: Sp. Propuls. Conf., Rome, Italy, 2016.
  • [17] V. Kotov, Particle conservation in numerical models of the tokamak plasma edge, Phys. Plasmas. 24 (2017). https://doi.org/10.1063/1.4980858.
  • [18] J. Rapp, G. De Temmerman, G.J. Van Rooij, P.A. Zeijlmans Van Emmichoven, A.W. Kleyn, Plasma-facing materials research for fusion reactors at Fom Rijnhuizen, in: 15th Int. Conf. Plasma Phys. Appl. Rom. J. Phys., 2011: pp. 30–35.
  • [19] M. Malo, A. Moroño, E.R. Hodgson, Plasma etching to enhance the surface insulating stability of alumina for fusion applications, Nucl. Mater. Energy. 9 (2016) 247–250. https://doi.org/10.1016/j.nme.2016.05.008.
  • [20] S.M. Motevalli, N. Dashtban, M. Maleki, Determination of optimum conditions in ITER tokamak by using zero-dimensional model, Indian J. Phys. 95 (2021) 2211–2215. https://doi.org/10.1007/s12648-020-01857-6.
  • [21] M. Reinhart, S. Brezinsek, A. Kirschner, J.W. Coenen, T. Schwarz-Selinger, K. Schmid, A. Hakola, H. van der Meiden, R. Dejarnac, E. Tsitrone, R. Doerner, M. Baldwin, D. Nishijima, W.P. Team, Latest results of eurofusion plasma-facing components research in the areas of power loading, material erosion and fuel retention, Nucl. Fusion. 62 (2022) 042013. https://doi.org/10.1088/1741-4326/ac2a6a.
  • [22] C.A. Schneider, W. Rasband, K.W. Eliceiri, Image processing and analysis in Java, (2012).
  • [23] A. Pahsa, Y. Aydoğdu, F. Göktaş, Mathematical calculation of material reliability using surface roughness feature based on plasma material interaction experiment results, Eksploat. i Niezawodn. – Maint. Reliab. 25 (2023). https://doi.org/10.17531/ein/169815.
  • [24] Centre for Innovation in Mathematics Teaching, 12 correlation and regression, 215–242. https://www.cimt.org.uk/projects/mepres/alevel/stats_ch12.pdf.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5bfab3db-09a5-449a-acae-44467fcc647d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.