PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Bacterial and Fungal-Mineral Interactions and Their Application in Bioremediation – A Review

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Geomicrobiology is an interdisciplinary field of research that studies the role of microorganisms during the geological process from the inception of the earth and their perspective on the future of the earth. Scientists focused on microbe mineral interactions in various processes such as bioweathering, transformation, and the formation of biominerals to better understand the role of microbes in geological processes. Those processes are part of the geochemical cycles of elements, some of which are essential nutrients for life and others are toxic to life. Microorganisms, especially fungi and bacteria, as well as their exudates, are the major agents of geomicrobiology due to their important geological activities, which have a role in the bioweathering of rocks and minerals. Mobilization and immobilization of metals as well as the formation of new biominerals occur because of these activities and their fast growth. They are well known to be used in different strategies of bioremediation and they are genetically engineered to become more specific in removing and dissolving pollutants in the environment. The goal of the review was to outline the role of bacteria and fungi in bioremediation as well as in important geological processes, such as mineral alteration, bioweathering and biomineralization.
Rocznik
Strony
1--13
Opis fizyczny
Bibliogr. 79 poz., rys.
Twórcy
  • Department of Biogeoscience, Scientific Research Center (SRC), Soran University, Soran, Erbil, Iraq
autor
  • Department of Biogeoscience, Scientific Research Center (SRC), Soran University, Soran, Erbil, Iraq
  • Department of Biogeoscience, Scientific Research Center (SRC), Soran University, Soran, Erbil, Iraq
Bibliografia
  • 1. Abbas, S.H., Ismail, I.M., Mostafa, T.M., Sulaymon, A.H. 2014. Biosorption of heavy metals: a review. J Chem Sci Technol, 3, 74–102.
  • 2. Abdullah, S.M., Kolo, K., Konhauser, K.O., Pirouei, M. 2022. Microbial Domains and Their Role in the Formation of Minerals. Mineral Formation by Microorganisms. Springer.
  • 3. Addadi, L., Raz, S., Weiner, S. 2003. Taking advantage of disorder: amorphous calcium carbonate and its roles in biomineralization. Advanced Materials, 15, 959–970.
  • 4. Addadi, L., Weiner, S. 2014. Biomineralization: mineral formation by organisms. Physica Scripta, 89, 098003.
  • 5. Barns, S.M., Nierzwicki-Bauer, S.A. 2018. Microbial diversity in ocean, surface and subsurface environments. Geomicrobiology, 35–80.
  • 6. Bazylinski, D.A., Frankel, R.B. 2003. Biologically controlled mineralization in prokaryotes. Reviews in Mineralogy and Geochemistry, 54, 217–247.
  • 7. Benning, L.G., Waychunas, G.A. 2008. Nucleation, growth, and aggregation of mineral phases: Mechanisms and kinetic controls. Kinetics of Water-Rock Interaction. Springer.
  • 8. Bentley, R., Chasteen, T.G. 2002. Microbial methylation of metalloids: arsenic, antimony, and bismuth. Microbiology and molecular biology reviews, 66, 250–271.
  • 9. Berridge, M.J., Bootman, M.D., Lipp, P. 1998. Calcium-a life and death signal. Nature, 395, 645–648.
  • 10. Bhupinderpal‐Singh, Nordgren, A., Ottosson Löfvenius, M., Högberg, M., Mellander, P.E., Högberg, P. 2003. Tree root and soil heterotrophic respiration as revealed by girdling of boreal Scots pine forest: extending observations beyond the first year. Plant, Cell & Environment, 26, 1287–1296.
  • 11. Bin, L., Ye, C., Lijun, Z., Ruidong, Y. 2008. Effect of microbial weathering on carbonate rocks. Earth Science Frontiers, 15, 90–99.
  • 12. Borrok, D., Turner, B.F., Fein, J.B. 2005. A universal surface complexation framework for modeling proton binding onto bacterial surfaces in geologic settings. American Journal of Science, 305, 826–853.
  • 13. Boswell, G.P., Jacobs, H., Ritz, K., Gadd, G.M., Davidson, F.A. 2007. The development of fungal networks in complex environments. Bulletin of Mathematical Biology, 69, 605.
  • 14. Braissant, O., Cailleau, G., Aragno, M., Verrecchia, E.P. 2004. Biologically induced mineralization in the tree Milicia excelsa (Moraceae): its causes and consequences to the environment. Geobiology, 2, 59–66.
  • 15. Brandl, H. 2002. Metal-microbe-interactions and their biotechnological applications for mineral waste treatment. Recent Res. Dev. Microbiol, 6, 571–584.
  • 16. Burford, E.P., Kierans, M., Gadd, G.M. 2003. Geomycology: fungi in mineral substrata. Mycologist, 17, 98–107.
  • 17. Chen, J.-P., Lin, Y.-S. 2007. Sol–gel-immobilized recombinant E. coli for biosorption of Cd2+. Journal of the Chinese Institute of Chemical Engineers, 38, 235–243.
  • 18. Cubillas, P., Anderson, M.W. 2010. Synthesis mechanism: crystal growth and nucleation. Zeolites and catalysis: synthesis, reactions and applications, 1–55.
  • 19. Daghino, S., Martino, E., Perotto, S. 2010. Fungal weathering and implications in the solubilization of metals from soil and from asbestos fibres. Current research, technology and education topics in applied microbiology and microbial biotechnology, 1, 329–338.
  • 20. De Muynck, W., De Belie, N., Verstraete, W. 2010. Microbial carbonate precipitation in construction materials: a review. Ecological engineering, 36, 118–136.
  • 21. Dong, H. 2010. Mineral-microbe interactions: a review. Frontiers of Earth Science in China, 4, 127–147.
  • 22. Ehrlich, H.L. 2006. Geomicrobiology: relative roles of bacteria and fungi as geomicrobial agents. Fungi in biogeochemical cycles, 1–27.
  • 23. Ezeonyejiaku, C.D., Obiakor, M.O., Ezenwelu, C. 2011. Toxicity of copper sulphate and behavioral locomotor response of tilapia (Oreochromis niloticus) and. Online Journal of Animal and Feed Research, 1, 130–134.
  • 24. Fomina, M., Alexander, I.J., Hillier, S., Gadd, G. 2004. Zinc phosphate and pyromorphite solubilization by soil plant-symbiotic fungi. Geomicrobiology Journal, 21, 351–366.
  • 25. Fomina, M., Ritz, K., Gadd, G.M. 2000. Negative fungal chemotropism to toxic metals. FEMS Microbiology Letters, 193, 207–211.
  • 26. Francis, A., Dodge, C., Gillow, J. 1992. Biodegradation of metal citrate complexes and implications for toxic-metal mobility. Nature, 356, 140–142.
  • 27. Gadd, G.M. 1999. Fungal production of citric and oxalic acid: importance in metal speciation, physiology and biogeochemical processes. Advances in microbial physiology, 41, 47–92.
  • 28. Gadd, G.M. 2002. Microbial interactions with metals/radionuclides: the basis of bioremediation. Radioactivity in the Environment, 2, 179–203.
  • 29. Gadd, G.M. 2007. Geomycology: biogeochemical transformations of rocks, minerals, metals and radionuclides by fungi, bioweathering and bioremediation. Mycological research, 111, 3–49.
  • 30. Gadd, G.M. 2010. Metals, minerals and microbes: geomicrobiology and bioremediation. Microbiology, 156, 609–643.
  • 31. Gadd, G.M., de Rome, L. 1988. Biosorption of copper by fungal melanin. Applied microbiology and biotechnology, 29, 610–617.
  • 32. Gadd, G.M., Raven, J.A. 2010. Geomicrobiology of eukaryotic microorganisms. Geomicrobiology Journal, 27, 491–519.
  • 33. Ghorbani, Y., Oliazadeh, M., Roohi, R., Pirayehgar, A. 2007. Use of some isolated fungi in biological leaching of aluminum from low grade bauxite. African Journal of biotechnology, 6.
  • 34. Ghosh, T., Bhaduri, S., Montemagno, C., Kumar, A. 2019. Sporosarcina pasteurii can form nanoscale calcium carbonate crystals on cell surface. PloS one, 14, e0210339.
  • 35. Göhre, V., Paszkowski, U. 2006. Contribution of the arbuscular mycorrhizal symbiosis to heavy metal phytoremediation. Planta, 223, 1115–1122.
  • 36. Gonzalez-Chavez, M., Carrillo-Gonzalez, R., Wright, S., Nichols, K. 2004. The role of glomalin, a protein produced by arbuscular mycorrhizal fungi, in sequestering potentially toxic elements. Environmental pollution, 130, 317–323.
  • 37. Gorbushina, A.A. 2007. Life on the rocks. Environmental microbiology, 9, 1613–1631.
  • 38. Gorbushina, A.A., Broughton, W.J. 2009. Microbiology of the atmosphere-rock interface: how biological interactions and physical stresses modulate a sophisticated microbial ecosystem. Annual review of microbiology, 63, 431–450.
  • 39. Goriely, A., Tabor, M. 2006. Estimates of biomechanical forces in Magnaporthe grisea. Mycological Research, 110, 755–759.
  • 40. Hao, C., Wang, L., Dong, H., Zhang, H. 2010. Succession of acidophilic bacterial community during bio-oxidation of refractory gold-containing sulfides. Geomicrobiology Journal, 27, 683–691.
  • 41. Harrison, J.J., Turner, R.J., Marques, L.L., Ceri, H. 2005. Biofilms: a new understanding of these microbial communities is driving a revolution that may transform the science of microbiology. American Scientist, 93, 508–515.
  • 42. Haselwandter, K., Winkelmann, G. 2002. Ferricrocin-an ectomycorrhizal siderophore of Cenococcum geophilum. Biometals, 15, 73–77.
  • 43. Hoffland, E., Kuyper, T.W., Wallander, H., Plassard, C., Gorbushina, A.A., Haselwandter, K., Holmström, S., Landeweert, R., Lundström, U.S., Rosling, A. 2004. The role of fungi in weathering. Frontiers in Ecology and the Environment, 2, 258–264.
  • 44. Hsu-Kim, H., Kucharzyk, K.H., Zhang, T., Deshusses, M.A. 2013. Mechanisms regulating mercury bioavailability for methylating microorganisms in the aquatic environment: a critical review. Environmental science & technology, 47, 2441–2456.
  • 45. Jaiswal, D.K., Verma, J.P. 2018. Role of geomicrobiology and biogeochemistry for bioremediation to clean the environment. Environ Anal Eco Stud, 1, EAES, 000505.
  • 46. Kolo, K., Claeys, P. 2005. In vitro formation of Ca-oxalates and the mineral glushinskite by fungal interaction with carbonate substrates and seawater. Biogeosciences, 2, 277–293.
  • 47. Kolo, K., Keppens, E., Préat, A., Claeys, P. 2007. Experimental observations on fungal diagenesis of carbonate substrates. Journal of Geophysical Research: Biogeosciences, 112.
  • 48. Konhauser, K. 2007. Introduction to geomicrobiology, microbial weathering UK: Blackwell Publishing, 192–235.
  • 49. Kulczycki, E., Fowle, D.A., Knapp, C., Graham, D.W., Roberts, J.A. 2007. Methanobactin‐promoted dissolution of Cu‐substituted borosilicate glass. Geobiology, 5, 251–263.
  • 50. Kumar, R., Kumar, A.V. 1999. Biodeterioration of stone in tropical environments: an overview.
  • 51. Kushwaha, A., Hans, N., Kumar, S., Rani, R. 2018. A critical review on speciation, mobilization and toxicity of lead in soil-microbe-plant system and bioremediation strategies. Ecotoxicology and environmental safety, 147, 1035–1045.
  • 52. Liermann, L.J., Kalinowski, B.E., Brantley, S.L., Ferry, J.G. 2000. Role of bacterial siderophores in dissolution of hornblende. Geochimica et Cosmochimica Acta, 64, 587–602.
  • 53. Lloyd, J.R. 2002. Bioremediation of metals; the application of micro-organisms that make and break minerals. interactions, 2, M2.
  • 54. Lloyd, J.R. 2003. Microbial reduction of metals and radionuclides. FEMS microbiology reviews, 27, 411–425.
  • 55. Mann, S. 2001. Biomineralization: principles and concepts in bioinorganic materials chemistry, Oxford University Press on Demand.
  • 56. Mao, Y., Du, Y., Cang, X., Wang, J., Chen, Z., Yang, H., Jiang, H. 2013. Binding competition to the POPG lipid bilayer of Ca2+, Mg2+, Na+, and K+ in different ion mixtures and biological implication. The Journal of Physical Chemistry B, 117, 850–858.
  • 57. Martino, E., Perotto, S., Parsons, R., Gadd, G.M. 2003. Solubilization of insoluble inorganic zinc compounds by ericoid mycorrhizal fungi derived from heavy metal polluted sites. Soil Biology and Biochemistry, 35, 133–141.
  • 58. Maurice, P.A., Haack, E.A., Mishra, B. 2009. Siderophore sorption to clays. Biometals, 22, 649–658.
  • 59. Money, N.P. 2004. The fungal dining habit: a biomechanical perspective. Mycologist, 18, 71–76.
  • 60. Monteil, C.L., Benzerara, K., Menguy, N., Bidaud, C.C., Michot-Achdjian, E., Bolzoni, R., Mathon, F. P., Coutaud, M., Alonso, B., Garau, C. 2021. Intracellular amorphous Ca-carbonate and magnetite biomineralization by a magnetotactic bacterium affiliated to the Alphaproteobacteria. The ISME Journal, 15, 1–18.
  • 61. Olaniran, A.O., Balgobind, A., Pillay, B. 2013. Bioavailability of heavy metals in soil: impact on microbial biodegradation of organic compounds and possible improvement strategies. International journal of molecular sciences, 14, 10197–10228.
  • 62. Ortega-Morales, B.O., Narváez-Zapata, J., Reyes-Estebanez, M., Quintana, P., la Rosa-García, D., Bullen, H., Gómez-Cornelio, S., Chan-Bacab, M.J. 2016. Bioweathering potential of cultivable fungi associated with semi-arid surface microhabitats of Mayan buildings. Frontiers in microbiology, 7, 201.
  • 63. Pasquale, V., Fiore, S., Hlayem, D., Lettino, A., Huertas, F.J., Chianese, E., Dumontet, S. 2019. Biomineralization of carbonates induced by the fungi Paecilomyces inflatus and Plectosphaerella cucumerina. International Biodeterioration & Biodegradation, 140, 57–66.
  • 64. Pinzari, F., Tate, J., Bicchieri, M., Rhee, Y.J., Gadd, G.M. 2013. Biodegradation of ivory (natural apatite): possible involvement of fungal activity in biodeterioration of the L ewis C hessmen. Environmental microbiology, 15, 1050–1062.
  • 65. Rahman, Z., Singh, V.P. 2020. Bioremediation of toxic heavy metals (THMs) contaminated sites: concepts, applications and challenges. Environmental Science and Pollution Research, 27, 27563–27581.
  • 66. Rosén, K., Weiliang, Z., Mårtensson, A. 2005. Arbuscular mycorrhizal fungi mediated uptake of 137Cs in leek and ryegrass. Science of the Total Environment, 338, 283–290.
  • 67. Ruta, L., Paraschivescu, C., Matache, M., Avramescu, S., Farcasanu, I.C. 2010. Removing heavy metals from synthetic effluents using “kamikaze” Saccharomyces cerevisiae cells. Applied microbiology and biotechnology, 85, 763–771.
  • 68. Song, O.-R., Lee, S.-J., Lee, Y.-S., Lee, S.-C., Kim, K.-K., Choi, Y.-L. 2008. Solubilization of insoluble inorganic phosphate by Burkholderia cepacia DA23 isolated from cultivated soil. Brazilian Journal of Microbiology, 39, 151–156.
  • 69. Sterflinger, K. 2000. Fungi as geologic agents. Geomicrobiology Journal, 17, 97–124.
  • 70. Tabak, H.H., Lens, P., Van Hullebusch, E.D., Dejonghe, W. 2005. Developments in bioremediation of soils and sediments polluted with metals and radionuclides–1. Microbial processes and mechanisms affecting bioremediation of metal contamination and influencing metal toxicity and transport. Reviews in Environmental Science and Bio/Technology, 4, 115–156.
  • 71. Tang, Y., Zeiner, C.A., Santelli, C.M., Hansel, C. M. 2013. Fungal oxidative dissolution of the Mn (II)‐bearing mineral rhodochrosite and the role of metabolites in manganese oxide formation. Environmental microbiology, 15, 1063–1077.
  • 72. Uroz, S., Calvaruso, C., Turpault, M.-P., Frey-Klett, P. 2009. Mineral weathering by bacteria: ecology, actors and mechanisms. Trends in microbiology, 17, 378–387.
  • 73. Violante, A., Huang, P.M., Gadd, G.M. 2008. Biophysico-chemical processes of heavy metals and metalloids in soil environments, Wiley Online Library.
  • 74. Watts, H., Veacute, A.-A., Perera, T., Davies, J., Gow, N. 1998. Thigmotropism and stretch-activated channels in the pathogenic fungus Candida albicans. Microbiology, 144, 689–695.
  • 75. Wei, S., Sun, M. 2021. Transformation of calcite (CaCO3) into earlandite [Ca3 (C6H5O7) 2• 4H2O] by the fungus Trichoderma asperellum BDH65. International Biodeterioration & Biodegradation, 163, 105278.
  • 76. Weiner, S., Dove, P.M. 2003. An overview of biomineralization processes and the problem of the vital effect. Reviews in mineralogy and geochemistry, 54, 1–29.
  • 77. Weiss, I.M., Tuross, N., Addadi, L., Weiner, S. 2002. Mollusc larval shell formation: amorphous calcium carbonate is a precursor phase for aragonite. Journal of Experimental Zoology, 293, 478–491.
  • 78. Włodarczyk, A., Szymańska, A., Skłodowska, A., Matlakowska, R. 2016. Determination of factors responsible for the bioweathering of copper minerals from organic-rich copper-bearing Kupferschiefer black shale. Chemosphere, 148, 416–425.
  • 79. Yoshida, N., Higashimura, E., Saeki, Y. 2010. Catalytic biomineralization of fluorescent calcite by the thermophilic bacterium Geobacillus thermoglucosidasius. Applied and environmental microbiology, 76, 7322–7327.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5bf37247-92f0-4be1-9a88-cfaca2e0ae76
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.