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Abstract Convolutional neural networks (CNNs) were created for image classification
tasks. Shortly after their creation, they were applied to other domains, includ-
ing natural language processing (NLP). Nowadays, solutions based on artificial
intelligence appear on mobile devices and embedded systems, which places con-
straints on memory and power consumption, among others. Due to CNN mem-
ory and computing requirements, it is necessary to compress them in order to
be mapped to the hardware. This paper presents the results of the compression
of efficient CNNs for sentiment analysis. The main steps involve pruning and
quantization. The process of mapping the compressed network to an FPGA
and the results of this implementation are described. The conducted simu-
lations showed that the 5-bit width is enough to ensure no drop in accuracy
when compared to the floating-point version of the network. Additionally, the
memory footprint was significantly reduced (between 85 and 93% as compared
to the original model).
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1. Introduction

Natural language processing (NLP) is considered to be one of three main application
domains of deep learning (along with image and video processing). Nowadays, there is
an increasing need to utilize it on mobile devices for applications such as translation,
voice-typing, or image-to-text converters. As the computing power of mobile devices
increases, this enables them to replace personal computers for many tasks; however,
their resources are still severely limited. Consequently, the memory footprint and
computational burden reductions can bring significant benefits. It is worth noting
that, despite an abundance of research efforts in deep learning architecture compres-
sion for image processing [2, 6, 19,20], there are just a few projects intended for NLP
neural architecture compression [1, 5, 10,15].

This paper is a case study of applying common compression techniques for archi-
tectures designed for NLP. After pruning and quantization were applied, the model
was deployed to the FPGA platform. This has allowed for examining the feasibility
and efficiency of using FPGAs in a domain of embedded neural computations. The
experiments (conducted on standard datasets) revealed a strong relationship between
the size and structure of the datasets and the performance of the quantization and
pruning methods used. The quantization and pruning impact on the accuracy of the
analyzed neural architecture [9] was examined separately for each layer.

The paper is structured as follows. Section 2 provides an overview of the used
CNN architecture, quantization, and pruning processes. Section 3 briefly covers the
datasets used for the experiments. Section 4 describes the FPGA implementation
details. Finally, Section 5 contains the results of the experiments, and Section 7
summarizes the contributions of this work.

2. Compression of neural networks

2.1. CNN-non-static

Convolutional neural networks (CNNs) are composed of neurons that have learnable
weights and biases. Each neuron receives multi-dimensional vectors (tensors) as its
input. These then perform a convolution operation using multi-dimensional filters.
This is usually followed by pooling or non-linearity functions. We employed one of the
most commonly used NLP models; i.e., CNN-non-static from [9]. The model uses
pre-trained 300-dimensional word GloVe embeddings [14], which are fine-tuned during
training. Unknown words are randomly initialized. Two window sizes were used (2 and
3), resulting in 2 parallel CNN layers with 128 filters each. The CNN layers outputs
were concatenated and then connected to a dense (fully-connected) layer with 128
outputs. CNNs and dense layers have rectified linear units as activation functions.
The last layer uses a softmax activation function in the case of many outputs and
a sigmoid activation function in the case of binary classification. After each layer,
a dropout was applied with a probability of 50%. The training data was divided
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into mini-batches of a size of 128. The training involves Nadam [4] as an optimizing
algorithm. The training lasts 25 epochs, and the best model is saved.

The layers of a CNN have neurons that generate output feature maps yi,
i = 1, ..., N from input feature maps xj , j = 1, ...,M as follows:

yi = bi +
M∑

j=1

Fij ∗ xj , (1)

where Fij are two-dimensional (2D) convolutional kernels of dimensions H×W , ∗ rep-
resents the convolution operation, and bi are the bias terms.

The number of multiply-accumulate (MAC) operations and cycles spent on the
execution in a practical implementation is often used as the metric for the complexity
of a CNN. Assuming each output feature map yi has P elements (where P is equal
to the height multiplied by the width of a given feature map), the total number of
MAC calculations for a convolutional filtering operation isMACs = PHWMN . The
quantization role is intended to reduce the complexity of each of these operations,
while the goal of the network compression through pruning is to reduce the total
number of operations.

2.2. Pruning

After training a neural model, we acquire a set of weights for each trainable layer.
These weights are not evenly distributed over the range of possible values for a selected
data format. As presented in Figure 1, most weights are concentrated around zero;
therefore, their impact on the resulting activation value is not significant. The mech-
anism of pruning removes those weights whose values are below a certain threshold
level. The authors of [7] examined how pruning affects convolutional neural networks
for image classification, showing little accuracy drop and a high compression ratio.

Figure 1. Histogram of the first convolutional layer of model weights – 50% of weights cut
out by pruning operation (marked in red)
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In our work, pruning is applied to the 1D convolution layer according to Algo-
rithm 1. As the weights are symmetrically distributed around 0, the threshold was
calculated for negative values based on the absolute value. Weight distribution may
differ depending on the dataset, network architecture, and training algorithm. As
a result, checking the distribution of the weights before applying the pruning is an
important step. The example from Figure 1 shows that a threshold level of 0.02 is
sufficient to remove around 50% of the weights. Depending on the specific network
implementation, storing the weights may require huge amounts of memory; removing
weights through pruning have a direct impact on lowering the storage requirements.

Algorithm 1 One-D convolution layer with pruning.
1: for outS in output_size do
2: for outFM in output_feature_maps do
3: for inFM in input_feature_maps do
4: for kerS in kernel_size do
5: if abs(weight[inFM ][outFM ][kerS]) >= pruning_threshold then
6: output(outS, outFM) += input(outS + kerS, inFM)∗

weight[inFM ][outFM ][kerS]
7: end if
8: end for
9: end for

10: output(outS, outFM) += bias[outFM ]

11: end for
12: end for

The pruning mechanism is especially effective in FPGA implementations. In stan-
dard CPUs, processing throughput improvement is not important since the multiply
and accumulate operation is replaced by a conditional; on most modern processors,
both of these operations are supported by the hardware. More-significant improve-
ments can be achieved when the pruning is extensive enough to enable algorithms
for sparse operations; however, such extreme pruning will likely have a considerable
impact on the accuracy.

In an FPGA implementation of a neural network, however, it is possible to hard
code weights into LUT or BRAM memories during synthesis; as a result, the total
cost of resolving the condition whether the specific calculation should be performed
is moved from inference to compilation. The weights that are removed by pruning
will not be included in the synthesized design before the implementation step, saving
both logic and routing resources. This technique, however, requires full kernel paral-
lelization; for typical image processing architectures, it is not feasible to implement
them in the current FPGAs. Network architectures for NLP have fewer dimensions
and often use smaller kernels; therefore, kernel loops can be fully unrolled, even in
mid-scale FPGA chips.
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2.3. Quantization

Quantization is the procedure of constraining values from a continuous set or denser
domain to a discrete set (e.g., integers) or sparser domain in which the quantized input
values will be represented. In our case, the domain is a floating-point representation.
A floating-point number can be represented as follows:

flp = m · be, (2)

where m ∈ Z is the mantissa, b = 2 is the base, and e ∈ Z is the exponent.
In the case of a single-precision floating-point format, the mantissa is assigned 23 bits,
the exponent is assigned 8 bits, and 1 bit is assigned for a sign indicator (according
to the IEEE-754 standard). Therefore, the set of values that can be defined by this
format is described by the following:

flpsingle : {±2−126, . . . ,±(2− 2−23)× 2127}. (3)

Similarly, the reduced precision IEEE-754 mini-float format assigns ten bits for the
mantissa, five bits for the exponent, and one sign bit.

2.3.1. Dynamic fixed-point quantization

Currently, GPUs with parallel processing being applied to machine learning operate
mainly using the single-precision format. In contrast, embedded DSPs and the latest
GPUs operate using fixed-point processing, which restricts the numbers to a range:

fxp : 2−frac_bits · {−2total_bits−1, . . . , 2total_bits−1 − 1}, (4)

where total_bits ∈ {8, 16} are conventional bit-widths, and frac_bits is a shift
down (or up) that determines the fractional length (or the number of fractional bits)
as well as integer length int_bits = total_bits− frac_bits−1 for signed numerical
representation. The format in which the fractional length varies over the individual
coefficients or data samples is also referred to as dynamic fixed-point. The main
difference between the traditional and dynamic formats is the fixed location of the
integer and the fractional part separation in the former. This results in the utilization
efficiency of the data format, which is higher in the dynamic fixed-point. However,
dynamic fixed-point is more challenging in implementation; thus, traditional fixed-
point prevails.

It is possible to define a general mapping from set of floating-point data x ∈ S
to fixed-point q as follows (assuming signed representation):

qfxp = Q(xflp) = µ+ σ · round(σ−1 · (x− µ)). (5)

In our case, µ = 0 and σ = 2−frac_bits, where

int_bits = ceil(log2(max
x∈S
|x|)) (6)
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and frac_bits = total_bits − int_bits − 1. Scaling factor σ is essentially just a
shift up or down. One drawback is that a great deal of precision may be lost if a large
mean skews the distribution of dataset S.

A side effect of the adopted approach is representation saturation; this means
that int_bits and frac_bits may not accommodate a full dynamic range of the
original number representation. Some values denoted as outliers are saturated to
the max or min of the quantization range. In order to determine how detrimental
it is for the overall performance of the quantization module, a histogram analysis
is conducted. This analysis determines the number of outliers that get truncated;
these should amount to less the 0.1 % of the whole number of examined values in the
examined dataset. In addition to this rule-of-thumb approach, some other methods
were also examined; this quantization aspect is still open to further research.

2.3.2. Integer quantization

Another approach is quantization that maps floating-point values x ∈ S to integers:

qint = Q(xflp) = ceil
(

(x− µ) · σ
maxS −minS

)
. (7)

The µ parameter can be set to either minS or zero. The former case is known as
an asymmetric integer quantization (e.g., used in the Tensorflow framework), and
the latter case is called symmetric quantization. The compression system presented
in the paper is based on symmetric quantization, and the dynamic fixed point was
also implemented. These schemes were used because they are the more generic and
generally lead to the best results. Furthermore, we were not constrained with any
specific platform that would require the use of a dedicated compression scheme. It is
worth emphasizing that the hardware platform used for neural model implementation
is a decisive factor for a compression scheme. Platforms such as FPGAs are much
more flexible than DSPs or ASICs since they allow for a more aggressive compression
scheme.

All of the presented approaches are examples of linear quantization; however,
it is also possible to use a nonlinear version to minimize quantization loss. The
hardware implementation of nonlinear quantization is more sophisticated, and it is
more challenging to achieve the gain in the used hardware resources.

FPGA implementation can also give additional freedom for quantization adjust-
ments, as it is not bound to any standard data width nor format. On a standard
CPU, moving from 16-bit precision to 15-bit will not result in any performance im-
provements; a calculation will be executed using the same hardware. For FPGAs,
however, this will result in synthesizing a smaller logic design with fewer connections,
which can be beneficial for latency, throughput, or calculation density.

The order in which the quantization and pruning are applied is critical, especially
for lower-precision representation. If quantization is applied first, some of the values
will be removed by the pruning. With high quantization precision and a low pruning
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threshold, the effect is hardly noticeable. However, with an increase in the prun-
ing threshold and a decrease in the quantization resolution, the significant portion of
the available range will not be utilized. Therefore, pruning should be applied first.

3. Datasets

Our experiments are performed on the same datasets as were used in [9]; summary
statistics of the datasets are provided in Table 1. Some datasets are divided into
training, validation, and testing data. If the validation data is not specified, then
a random 10% of the training is used for it. In the MR, Subj, CR, and MPQA
datasets, the testing data was not prepared; a tenfold cross-validation was performed
instead.

Table 1
Dataset statistics [9]

Max
words per
sequence

Vocabulary
size

Classes Docu-
ments

Cross-
-validation

Accuracy
[%]

MR1 64 18,767 2 10,662 Yes 81.5

SST-12 61 17,838 5 11,855 No 48.0

SST-22 61 16,190 2 9613 No 87.2

Subj3 128 21,324 2 10,000 Yes 93.4

TREC4 45 8766 6 5952 No 93.6

CR5 113 5341 2 3775 Yes 84.3

MPQA6 44 6248 2 10,606 Yes 89.5
1 Movie reviews [13], https://www.cs.cornell.edu/people/pabo/movie-review-data/
2 Movie reviews [16], https://nlp.stanford.edu/sentiment/
3 Subjective/objective sentences [12],

https://www.cs.cornell.edu/people/pabo/movie-review-data/
4 Question categorization [11], http://cogcomp.org/page/resource_view/8
5 Customer reviews [8], https://www.cs.uic.edu/~liub/FBS/sentiment-analysis.html
6 Opinions [17], http://mpqa.cs.pitt.edu/corpora/mpqa_corpus/

4. FPGA implementation

4.1. Pruning

The weights in a neural network used in this work are mostly concentrated in the
convolution operations (around 99% of total trained weights, with 1% in the fully
connected layers). Therefore, the FPGA implementation is concentrated on reducing
and accelerating the convolutional layer. As the embedding layer is not implemented
in the FPGA, it is excluded from these calculations. The design was implemented
and synthesized using the Xilinx Vivado HLS environment according to Algorithm 1.
All weights are hard-coded into the logic to allow for more-effective pruning. The
loops from Lines 2-4 are fully unrolled.
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The process of transforming the Keras model to an IP core that can be used in the
FPGA is presented in Figure 2. In the first step, the Keras network model is created
and trained. When the accuracy is satisfactory, the network model and weights need
to be exported. A Python script processes the weights from an HDF5 file to a C++
header format. Their values must be known during compilation; otherwise, Vivado
HLS will not be able to create a hard-coded network. A separate header is created
for each layer. A JSON file containing the model architecture is used to create the
inference function of a neural network. This function is a top-level one and performs all
of the computations on the input data. At this point, we can decide how the data and
weights should be represented. A simulation is performed to validate the generation
process. If the results are satisfactory, Vivado HLS will synthesize the network IP
core. Next, the IP core is put into the Vivado design, and the bitstream is generated.

Figure 2. Processing Keras [3] model to FPGA IP core

4.2. Quantization

The precision reduction was applied to both the weights of the layers (embeddings, two
convolutional, and two dense layers) and the outputs of the activation functions (after
each of the convolutional and first dense layer). The process is performed by finding
a minimum and maximum of the values to be reduced and uniformly dividing the value
range into 2bits buckets. Each bucket has a middle point of the represented subrange
assigned. Each layer weight or activation output can be quantized using a different
number of bits. In the case of layer weights, the quantization is straightforward.The
precision reduction of the activation functions requires running a computation on
the training data and remembering the minimum and maximum of the activation
functions for the chosen layers. During the testing, the computed values may fall
outside this range – these need to be clipped accordingly.
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5. Experiments

5.1. Uniform-precision quantization

The first set of experiments involved a precision reduction to the same number of bits
for every combination of layers and activations. The tested number of bits included
32, 16, 8, 7, 6, 5, 4, 3, 2, and 1, which gives

2number of layers and activations · number of tested bit-widths = 28 · 10 (8)

experiments for each dataset or fold. In all of the experiments, the integer quantization
resulted in a bit better accuracy than in a dynamic fixed point (difference up to 2%);
therefore, it was used for the presentation of the results.

Tables 2 and 3 presents the results for the SST-2 and MR datasets with a single
layer or activation quantized. In the case of 32 bits, there is no reduction, as it is
default precision. Accuracy increases in some settings, and a precision reduction to
16 bits does not change the accuracy results. The embeddings can be reduced to five
bits, and a majority of the dataset weights of the convolutional layers can be reduced
to four bits. Usually, quantization of activations decrease the accuracy more than
quantizations of the weights. Accuracy drops the most when the activations of the
first dense layer are reduced to fewer than four bits. It is important to mark that the
convolutional layers are parallel; reducing one of the layers to one bit does not change
the overall accuracy significantly, as the second is operating with full precision.

The tables also present the results for the precision reduction of all layers and
activations simultaneously (last row). It is worth noting that the quantization of all
layers and activations can yield better results than when the precision is reduced in
only one of them. Precision below four to five bits results in an accuracy drop of more
than 1%.

Table 2
Model accuracy for SST-2 dataset as function of precision for each layer or layer activation

Acc. [%]
32 bits

Accuracy change for selected precision [bits]

16 8 7 6 5 4 3 2 1

embedding_1_a 85.01 0 +0.11 +0.16 +0.33 +0.11 +0.60 −0.33 −0.72 −0.83

conv1d_1 85.01 0 0 0 −0.11 +0.05 +0.22 +0.27 0 −0.06

conv1d_1_a 85.01 0 0 +0.05 +0.11 +0.22 +0.27 +0.44 +0.16 −0.94

conv1d_2 85.01 0 −0.06 0 +0.05 0 +0.16 −0.11 +0.33 +0.11

conv1d_2_a 85.01 0 −0.06 −0.06 −0.06 0 0 +0.27 −0.17 −2.31

dense_1 85.01 0 0 −0.06 −0.11 −0.11 0 0 0 +0.16

dense_1_a 85.01 0 +0.05 +0.05 +0.11 −0.11 −0.17 −1.59 −15.10 −32.68

dense_2 85.01 0 −0.06 0 +0.05 +0.05 −0.06 +0.05 +0.16 −0.11

all 85.01 0 +0.16 +0.16 +0.33 +0.16 +0.22 −1.65 −2.09 −22.30



34 Krzysztof Wróbel et al.

Table 3
Model accuracy for MR dataset as function of precision for each layer or layer activation

Acc. [%]
32 bits

Accuracy change for selected precision [bits]

16 8 7 6 5 4 3 2 1

embedding_1_a 80.35 0 −0.07 −0.04 +0.01 +0.04 −0.41 −1.07 −1.58 −1.57

conv1d_1 80.35 0 +0.02 +0.02 +0.01 −0.02 −0.04 +0.05 0 −0.22

conv1d_1_a 80.35 0 0 −0.03 −0.06 −0.05 −0.04 −0.11 −0.30 −2.86

conv1d_2 80.35 0 +0.01 +0.02 −0.01 −0.01 +0.03 −0.05 −0.12 −0.45

conv1d_2_a 80.35 0 0 −0.06 −0.07 −0.06 −0.04 −0.03 −0.31 −2.55

dense_1 80.35 0 +0.01 +0.02 +0.02 −0.06 −0.05 +0.01 −0.03 +0.09

dense_1_a 80.35 0 +0.08 +0.06 −0.04 −0.28 −1.02 −4.43 −15.40 −27.49

dense_2 80.35 0 +0.01 +0.03 +0.02 −0.02 −0.03 +0.02 +0.03 −0.15

all 80.35 0 +0.04 +0.05 −0.09 −0.41 −1.51 −3.22 −3.72 −21.66

5.2. Arbitrary-precision quantization

The second experiment was focused on finding the best precision reduction with an ar-
bitrary chosen maximal accuracy decrease. Here, we do not limit the model reduction
to the same number of bits for each layer and activation. In order to test every combi-
nation (including ten values of the number of bits), it would be necessary to perform
108 tests (which is not computable in a reasonable amount of time). A random-
restart hill-climbing algorithm was employed to tackle this problem (Alg. 2). In the
beginning, the algorithm randomizes the order in which the layers and activations
will be quantized. Then, it cyclically iterates through them until no further model
compression is possible. For each layer, it tries to find the smallest number of bits
that do not decrease the accuracy more than a set threshold. The searching method
using Algorithm 2 was restarted 50 times. In this work, we set the maximal accuracy
decrease to 0.2% of the original.

Algorithm 2 Random-restart hill-climbing algorithm for searching maximal
compression scheme.

threshold← 0.998 . allow 0.2% drop from original
for all places do . places – layers or activations undergoing quantization

precisions[place]← 32 . default precision of 32 bits
end for
original_accuracy ← test(precisions)
shuffle(places) . shuffle order of places
while precisions is changed do

for all places do
n← precisions[place]

for precision← 1, n do
precisions[place]← precision

accuracy ← test(precisions)
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if accuracy ≥ original_accuracy · threshold then
break

end if
end for

end for
end while

Table 4 shows the results of the precision reduction for each dataset. When com-
pared to 32-bit representation, the sizes of the models can be reduced by more than
84%. However, most space is taken by the word embeddings (more than 93%). This
could be further reduced by limiting the vocabulary and reducing the dimensions of
the embeddings. Another approach was to order the quantized layers and activations
by their influence on the model size (in this case, starting from the optimizing em-
bedding layer). The approach did not achieve better results than with Algorithm 2.
The same precision bit parameters were obtained for two datasets.

Table 4
Best model-size reduction and accuracy achieved in 50 runs of Algorithm 2

Size reduction
[%] Size [MB]

Size of embeddings
[%]

Accuracy [%]
32 bits reduced

MR 84.69 3.419 98.14 80.35 80.21
SST-1 87.52 2.655 96.12 46.79 46.92
SST-2 93.66 1.229 94.23 85.01 84.90
Subj 87.73 3.099 98.43 92.93 92.75
TREC 88.21 1.285 97.60 90.60 91.00
CR 85.33 1.023 93.39 83.31 83.15
MPQA 85.33 1.175 95.09 89.08 88.91

The best-found precision settings are shown in Table 5. All of the precision values
are equal to or fewer than eight bits.

Table 5
Best precision settings found by Algorithm 2 for each dataset

MR SST-1 SST-2 Subj TREC CR MPQA
embedding_1_a 5 4 2 4 4 5 5
conv1d_1 2 5 3 1 1 2 2
conv1d_1_a 5 4 2 2 4 5 7
conv1d_2 3 3 2 2 1 3 2
conv1d_2_a 4 6 3 3 2 3 6
dense_1 1 4 4 3 2 2 3
dense_1_a 7 8 5 6 4 6 6
dense_2 2 1 1 2 1 2 1
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5.3. Pruning and quantization

The third experiment involved a combination of quantization and pruning; it was
performed on the MR database. The data width changed from 32 bits to 1 bit,
omitting the values between 32 and 16 as well as between 16 and 8 (as the changes
were insignificant). Pruning was applied as described in Alg. 1. The threshold started
from 0 (i.e., no pruning) to 0.14 with step size equal to 0.005. When the threshold
reached 0.14, all weights were removed and no multiply and accumulate operations
were performed in the convolutional layers.

Figure 3 presents the extensiveness of pruning depending on a threshold. The
values are calculated as a ratio of the actually performed calculations to the number
of calculations that would be performed if no pruning were applied. It is visible that
the ratio quickly drops; this is a result of the Gaussian distribution of weights, which
are concentrated at around 0. Setting the pruning threshold to 0.035 results in around
20% of the calculations being performed, while the rest are omitted (as marked with
the red dashed line in Fig. 3).

Figure 3. Ratio of calculations performed after pruning to number of calculations that would
be performed without pruning

During the experiment, we performed the network inference on all of the test
samples from the MR database for each pruning threshold – quantization bit-width
combination, creating a mesh of values. The impact on the accuracy of the network
is presented in Figure 4. The quantization effect on the accuracy is independent
of pruning. A significant drop in accuracy appears below 3-bit precision as well as
over a 0.03–0.035 pruning threshold. Between these values and no reduction starting
point, a rectangular plateau (marked in semi-transparent red in Fig. 4) of only slight
variations in the precision can be observed.
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Figure 4. Accuracy results during network reduction through quantization and pruning

5.4. FPGA results

Due to the limitations of the synthesis tools, the exact CNN-static layers could not be
used. Therefore, the experimental results presented in this section are obtained from
a similar but smaller version of a convolutional layer, with an input of size 64 and 35
feature maps, a filter of size 2 and output of size 63, and 16 feature maps. The impact
of applying the quantization and pruning mechanisms on logic utilization, however,
can be extrapolated.

We checked the pruning and quantization effects separately and in conjunction.
The experiments were performed on a Xilinx Virtex-7 FPGA VC707 Evaluation Kit
with a Virtex-7 series FPGA. The test points were selected so the accuracy would
remain within 1% of the original. The results are summarized in Table 6. When both
techniques are used, the flip-flop utilization drops 4.27 times and the lookup table
utilization drops 4.32 times while having a minimal impact on the accuracy.

Table 6
FPGA resource utilization for selected quantization and pruning settings

Precision Pruning threshold FF LUT

32
0 8118 60,750

0.035 4449 14,906

3
0 1952 14,553

0.035 1899 14,047

6. Discussion

This work focuses on an intersection of CNN, NLP, sentiment analysis, and neural
model compression, which may be considered as a subfield of the emerging embedded
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machine-learning domain. We presented the results for the model, which is somehow
unique in NLP dominated by an RNN-based architecture. Our work as such is some-
how complementary to [5], where the authors examine the compression schemes for
natural language modeling and [15], which addresses embedding compression. It is
worth noting that we also addressed RNN compression in [18]. The authors of [5] ap-
plied quantization and pruning as well as more-advanced techniques such as low-rank
factorization for model compression. In [15], the multi-codebook quantization ap-
proach was applied, and the model was trained end-to-end. In our work, we proposed
the random-restart hill-climbing algorithm for searching the maximal compression,
which allowed us to achieve results optimal for each layer with a performance degra-
dation of lower than 0.2 % of the original accuracy. It is worth noting that, in order to
take advantage of this compression scheme, dedicated configurable hardware is essen-
tial (FPGA), which allows for adjusting the precision for each layer arbitrarily. The
CPU and GPU have a fixed internal processing architecture, which prevents them
from taking full advantage of the presented compression scheme.

Furthermore, the proposed scheme improved the original performance of the
model in some cases despite the applied compression (e.g., Table 4: TREC dataset).
This also results from a different structure of the NLP data and its representation in
a semantic latent space in a model where fewer more-distinct manifolds are created.
In NLP concepts are more core-grained distributed. This renders the model more
compression-prone, provided that an adequate algorithm is employed that is capable
of spotting and extracting the manifolds. The proposed random-restart hill-climbing
algorithm allows us to explore the latent space to some extent. However, to make
the process more effective, an algorithm that takes the data structure into account
as a prior should be used since it has a substantial impact on the performance of the
models.

7. Conclusions and future work

This paper considers several compression and pruning techniques for convectional neu-
ral networks in sentiment analysis. The results of the experiments show that the size of
the model may be reduced by more than 84% with a small performance degradation
of approximately 1%. Future work will concentrate on boosting the performance of
the given conventional network by changing the architecture, using a deeper model,
and modifying the filter scheme. Moreover, we plan to apply a memetic algorithm and
reinforcement techniques to find the configuration of the network that gives the best
model compression.

Acknowledgements

The research presented in this paper was partially supported by the Faculty of Com-
puter Science, Electronics, and Telecommunications of the AGH-UST statutory tasks
within the subsidy of the Ministry of Science and Higher Education.



Compressing sentiment analysis CNN models for efficient hardware processing 39

References

[1] Al-Hami M., Pietron M., Casas R., Hijazi S., Kaul P.: Towards a Stable Quan-
tized Convolutional Neural Networks: An Embedded Perspective. In: ICAART
2018: 10th International Conference on Agents and Artificial Intelligence: pro-
ceedings. Funchal, Madeira, Portugal, 16–18 January, 2018.

[2] Cheng Y., Wang D., Zhou P., Zhang T.: Model Compression and Acceleration
for Deep Neural Networks: The Principles, Progress, and Challenges, IEEE Sig-
nal Processing Magazine, vol. 35(1), pp. 126–136, 2018. https://doi.org/10.1109/
MSP.2017.2765695.

[3] Chollet F., et al.: Keras. https://keras.io, 2015.

[4] Dozat T.: Incorporating Nesterov Momentum into Adam. In: International Con-
ference on Learning Representations 2016. 2015. https://openreview.net/forum?
id=OM0jvwB8jIp57ZJjtNEZ.

[5] Grachev A.M., Ignatov D.I., Savchenko A.V.: Neural Networks Compression
for Language Modeling. In: Shankar B.U., Ghosh K., Mandal D.P., Ray S.S.,
Zhang D., Pal S.K. (eds.), Pattern Recognition and Machine Intelligence,
pp. 351–357, Springer International Publishing, Cham, 2017.

[6] Gysel P.: Ristretto: Hardware-Oriented Approximation of Convolutional Neural
Networks. Master’s thesis, University of California, 2016. http://arxiv.org/abs/
1605.06402.

[7] Han S., Pool J., Tran J., Dally W.: Learning both weights and connections for
efficient neural network. In: Advances in Neural Information Processing Systems
(NIPS 2015), pp. 1135–1143, 2015.

[8] Hu M., Liu B.: Mining and Summarizing Customer Reviews. In: Proceedings
of the Tenth ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, KDD ’04, pp. 168–177, ACM, New York, USA, 2004. https:
//doi.org/10.1145/1014052.1014073.

[9] Kim Y.: Convolutional Neural Networks for Sentence Classification. In: Proceed-
ings of the 2014 Conference on Empirical Methods in Natural Language Process-
ing (EMNLP), pp. 1746–1751. Association for Computational Linguistics, Doha,
Qatar, 2014. https://doi.org/10.3115/v1/D14-1181.

[10] Laura J.A., Masi G., Argerich L.: From Imitation to Prediction, Data Com-
pression vs Recurrent Neural Networks for Natural Language Processing, 2017.
http://arxiv.org/abs/1705.00697.

[11] Li X., Roth D.: Learning Question Classifiers. In: COLING 02: Proceedings
of the 19th international conference on Computational linguistics – Volume 1,
pp. 556–562, 2002.



40 Krzysztof Wróbel et al.

[12] Pang B., Lee L.: A Sentimental Education: Sentiment Analysis Using Subjec-
tivity Summarization Based on Minimum Cuts. In: Proceedings of the 42Nd
Annual Meeting on Association for Computational Linguistics, ACL ’04. As-
sociation for Computational Linguistics, Stroudsburg, PA, USA, 2004. https:
//doi.org/10.3115/1218955.1218990.

[13] Pang B., Lee L.: Seeing Stars: Exploiting Class Relationships for Sentiment
Categorization with Respect to Rating Scales. In: Proceedings of the 43rd Annual
Meeting on Association for Computational Linguistics, ACL ’05, pp. 115–124.
Association for Computational Linguistics, Stroudsburg, PA, USA, 2005. https:
//doi.org/10.3115/1219840.1219855.

[14] Pennington J., Socher R., Manning C.: Glove: Global Vectors for Word Represen-
tation. In: Proceedings of the 2014 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pp. 1532–1543. Association for Computational
Linguistics, Doha, Qatar, 2014. https://doi.org/10.3115/v1/D14-1162.

[15] Shu R., Nakayama H.: Compressing Word Embeddings via Deep Compositional
Code Learning, 2017. http://arxiv.org/abs/1711.01068.

[16] Socher R., Perelygin A., Wu J., Chuang J., Manning C.D., Ng A., Potts C.:
Recursive Deep Models for Semantic Compositionality Over a Sentiment Tree-
bank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural
Language Processing, pp. 1631–1642. Association for Computational Linguistics,
Seattle, Washington, USA, 2013. https://www.aclweb.org/anthology/D13-1170.

[17] Wiebe J., Wilson T., Cardie C.: Annotating Expressions of Opinions and Emo-
tions in Language, Language Resources and Evaluation, vol. 39(2), pp. 165–210,
2005. https://doi.org/10.1007/s10579-005-7880-9.

[18] Wielgosz M., Karwatowski M.: Mapping Neural Networks to FPGA-Based IoT
Devices for Ultra-Low Latency Processing, Sensors, vol. 19(13), 2019. https://
doi.org/10.3390/s19132981.

[19] Wróbel K., Wielgosz M., Pietroń M., Duda J., Smywiński-Pohl A.: Improving
text classification with vectors of reduced precision. In: ICAART 2018: 10th In-
ternational Conference on Agents and Artificial Intelligence: proceedings: Fun-
chal, Madeira, Portugal: 16–18 January, 2018.

[20] Xu Y., Wang Y., Zhou A., Lin W., Xiong H.: Deep Neural Network Compression
With Single and Multiple Level Quantization. In: AAAI18 32nd Conference on
Artificial Intelligence Technical Track: Machine Learning Methods, 2018. https:
//aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16479.

Affiliations

Krzysztof Wróbel
Jagiellonian University, ul. Gołębia 24, 31-007 Krakow, Poland, krzysztof@wrobel.pro,
ORCID ID: https://orcid.org/0000-0002-3485-7825

Michał Karwatowski
AGH University of Science and Technology, al. Adama Mickiewicza 30, 30-059 Krakow,
Poland, mkarwat@agh.edu.pl, ORCID ID: https://orcid.org/0000-0001-6285-136X



Compressing sentiment analysis CNN models for efficient hardware processing 41

Maciej Wielgosz
AGH University of Science and Technology, al. Adama Mickiewicza 30, 30-059 Krakow,
Poland, wielgosz@agh.edu.pl, ORCID ID: https://orcid.org/0000-0002-4401-2957

Marcin Pietroń
AGH University of Science and Technology, al. Adama Mickiewicza 30, 30-059 Krakow,
Poland, pietron@agh.edu.pl, ORCID ID: https://orcid.org/0000-0001-9357-9231

Kazimierz Wiatr
AGH University of Science and Technology, al. Adama Mickiewicza 30, 30-059 Krakow,
Poland, wiatr@agh.edu.pl, ORCID ID: https://orcid.org/0000-0001-5959-0277

Received: 29.07.2019
Revised: 08.11.2019
Accepted: 10.11.2019




