PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Transmission electron microscopy (TEM) as a tool for identification of combustion products : application to black layers in speleothems

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The present study deals with the application of High Resolution Transmission Electron Microscopy (HRTEM) to dark layers, occurring in the speleothems of Domica Cave (Slovakia). Chemical pre-treatment was necessary for sample purification and the effective extraction of carbon soot. For purposes of comparison, soot aggregates obtained from laboratory experiments on the combustion of beech wood and collected from a diesel engine also were studied. HRTEM analyses of combustion products permit a distinction to be made between soot aggregates that originated in different combustion processes. The diameter of spherical, primary particles depends on the conditions of combustion, notably temperature. Burning in diesel engines produces soot with relatively small, primary particles (diameter dp = 34 ± 4 nm). Primary, spherical particles of soot aggregates, obtained from the combustion of beech wood, were larger (diameter dp = 42 ± 5 nm). The diameters of primary particles of soot separated from Domica flowstones (samples DOM1 and DOM2) were similar to the wood samples (dp = 50 ± 9 nm). Another type of carbonaceous particle, obtained in the combustion process, had a spherical shape, but the diameter of about 50–500 nm was significantly larger than that of soot. Analyses performed on two samples (DOM S1 and DOM S2) confirmed that the black laminae owed their colour to particles, formed during wood combustion and later retained in the speleothems.
Rocznik
Strony
237--248
Opis fizyczny
Bibliogr. 53 poz., rys.
Twórcy
autor
  • Silesian University of Technology, Institute of Engineering Materials and Biomaterials, Konarskiego 18A, 44-100 Gliwice, Poland
autor
  • Institute of Geological Sciences, Polish Academy of Sciences, Twarda 51/55, 00-818 Warszawa
Bibliografia
  • 1. Alfe, M., Apicella, B., Barbella, R., Pozaud, J. N., Tregossi, A. & Ciajolo, A., 2009. Structure-property relationship in nanostructures of young and mature soot in premixed flames. Proceedings of the Combustion Institute, 32: 697-704.
  • 2. Bárta, J., 1965. Contribution to the prehistoric settlement of the caves of the Domica system. Slovenský Kras, 5: 58-73. [In Slovak, with English summary.]
  • 3. Benington, F., Melton, C. & Watson, P. J., 1962. Carbon dating prehistoric soot from Salts Cave, Kentucky. American Antiquity, 28: 238-241.
  • 4. Bockhorn, H., 1994. A short introduction to the problem. In: Bockhorn, H. (eds), Soot Formation in Combustion: Mechanisms and Models. Springer-Verlag, Berlin, pp. 3-8.
  • 5. Bond, T. C., Doherty, S. J., Fahey, D. W., Forster, P. M., Berntsen, T., DeAngelo, B. J., Flanner, M. G., Ghan, S., Kärcher, B., Koch, D., Kinnell, S., Kondo, Y., Quinn, P. K., Sarofim, M. C., Schultz, M. G., Schulz, M., Venkataraman, C., Zhang, H., Zhang, S., Bellouin, N., Guttikunda, S. K., Hopke, P. K., Jacobson, M. Z., Kaiser, J. W., Klimont, Z., Lohmann, U., Schwarz, J. P., Shindell, D., Storelvmo, T., Warren, S. G. & Zender, C. S., 2013. Bounding the role of black carbon in the climate system: A scientific assessment. Journal of Geophysical Research: Atmospheres, 118: 5380-5552.
  • 6. Brodowski, S., Amelung, W., Haumair, L., Abetz, C. & Zech, W., 2005. Morphological and chemical properties of black carbon in physical soil fractions as revealed by scanning electron microscopy and energy-dispersive X-ray spectroscopy. Geoderma, 128: 116-129.
  • 7. Carpentier, Y., Feraug, G., Dartois, E., Brunetto, R., Charon, E., Cao, A. T., D’Hendecourt, L., Brechignac, P., Rouzaud, J. N. & Pino, T., 2012. Nanostructuration of carbonaceous dust as seen through the positions of the 6.2 and 7.7 μm AIBs. Astronomy & Astrophysics, 548: A40, doi: 10.1051/0004-6361/ 201118700.
  • 8. Chang, S. J., Jeong, G. Y. & Kim, S. J., 2008. The origin of black carbon on speleothems in tourist caves in South Korea: Chemical characterization and source discrimination by radiocarbon measurement. Atmospheric Environment, 42: 1790-1800.
  • 9. Chen, Y., Shah, N., Braun, A., Huggins, F. E. & Huffman, G. P., 2005. Electron microscopy investigation of carbonaceous particulate matter generated by combustion of fossil fuels. Energy & Fuels, 19: 1644-1651.
  • 10. Clague, A. D. H., Donnet, J. B., Wang, T. K. & Peng, J. C. M., 1999. A comparison of diesel engine soot with carbon black. Carbon, 37: 1553-1565.
  • 11. Currie, L. A., Eglinton, T. J., Benner, B. A. Jr. & Pearson, A. 1997. Radiocarbon “dating” of individual chemical compounds in atmospheric aerosol: first results comparing direct isotopic and multivariate statistical apportionment of specific polycyclic aromatic hydrocarbons. Nuclear Instruments and Methods in Physics Research B, 123: 475-486.
  • 12. Deeb, C., Walter, P., Castaing, J., Penhoud, P. & Veyssiere, P., 2004. Transmission Electron Microscopy (TEM) investigations of ancient Egyptian cosmetic powders. Applied Physics A, 79: 393-396.
  • 13. Donnet, J. B., Bansal, R. C. & Wang, M. J. (eds), 1993. Carbon Black. Dekker, New York, 461 pp.
  • 14. Droppa, A., 1970. Contribution to the development of Domica Cave. Èeskoslovensky Kras, 22: 65-72. [In Slovak, with English summary.]
  • 15. Fernandes, M. B., Skjemstad, J. O., Johnson, B. B., Wells, J. D. & Brooks, P., 2003. Characterization of carbonaceous combustion residues. I. Morphological, elemental and spectroscopic features. Chemosphere, 51: 785-795.
  • 16. Franklin, R. E., 1951. The structure of graphitic carbons. Acta Crystallographica, 4: 253-261.
  • 17. Glavcheva, Z., Yancheva, D., Velcheva, E., Stomboliyska, B., Petrova, N., Petkova, V. & Lalev, G., 2016. Analytical studies of the Alexandrovo Thracian tomb wall paintings. Spectrochimica Acta, Part A: Molecular and Viomolecular Spectroscopy, 152: 622-628.
  • 18. Gradziński, M., Górny, A., Pazdur, A. & Pazdur, M. F., 2003. Origin of black coloured laminae in speleothems from the Kraków-Wieluń; Upland, Poland. Boreas, 32: 532-542.
  • 19. Gradziński, M., Hercman, H., Bella, P., Debaene, G. & Nowicki, T., 2002. Dark coloured laminae within speleothems of the Domica cave as an indicator of the prehistoric man activity. Slovenský Kras, 40: 41-48. [In Slovak, with English summary.]
  • 20. Gradziński, M., Hercman, H., Nowak, M. & Bella, P., 2007. Age of black coloured laminae within speleothems from Domica Cave and its significance for dating of prehistoric human settlement. Geochronometria, 28: 39-45.
  • 21. Griffin, J. J. & Goldberg, E. D., 1979. Morphologies and origin of elemental carbon in the environment. Science, 206: 563-565.
  • 22. Heidenreich, R. D., Hess, W. M. & Ban, L. L., 1968. Structure of spherule and layers inferred from electron microscopy and X-ray diffraction. Journal of Applied Crystallography, 1: 1-19.
  • 23. Hess, W. M. & Herd, C. R., 1993. Microstructure, morphology and general physical properties. In: Donnet, J. B., Bansal, R. C. & Wang, M. J. (eds), Carbon Black. Dekker, New York, pp. 89-173.
  • 24. Hill, C. A., 1982. Origin of black deposits in caves. National Speleological Society Bulletin, 44: 15-19.
  • 25. Jeong, G. Y., Kim, S. J. & Chang, S. J., 2003. Black carbon pollution of speleothems by fine urban aerosols in tourist caves. American Mineralogist, 88: 1872-1878.
  • 26. Kocbach, A., Li, Y., Yttri, K. E., Cassee, F. R., Schwarze, P. E. & Namork, E., 2006. Physicochemical characterisation of combustion particles from vehicle exhaust and residential wood smoke. Particle and Fibre Toxicology, 3:1, online: http:// www.particleandfibretoxicology.com/content/3/1/1 [03.01.2006].
  • 27. Koon, H. E. C., Nicholson, R. A. & Collins, M. J., 2003. A practical approach to the identi cation of low temperature heated bone using TEM. Journal of Archaeological Science, 30: 1393-1399.
  • 28. Kuhner, G. & Voll, M., 1993. Manufacture of carbon black. In: Donnet, J. B., Bansal, R. C. & Wang, M. J. (eds), Carbon Black. Dekker, New York, pp. 1-66.
  • 29. Lichardus, J., 1968. Domica-Höle, die bedeutendste Siedlung der Bükker Kultur. Bratislava, Vydavatel’stvo Slovenskej akademie vied, 120 pp. [In Slovak, with German summary.]
  • 30. Lichardus, J., 1974. Studien zur Bükker Kultur. Saarbrücker Beiträge zur Altertumskunde, 12: 1-169.
  • 31. Masiello, C. A., Druffel, E. R. M. & Currie, L. A., 2002. Radiocarbon measurements of black carbon in aerosols and ocean sediments. Geochimica et Cosmochimica Acta, 66: 1025-1036.
  • 32. Mata, M. P., Peacor, D. R. & Gallart-Marti, M. D., 2002. Transmission electron microscopy (TEM) applied to ancient pottery. Archaeometry, 44: 155-176.
  • 33. Nowack, B. & Bucheli, T. D., 2007. Occurrence, behavior and effects of nanoparticles in the environment. Environmental Pollution, 150: 5-22.
  • 34. Oberlin, A., 1989. High resolution TEM studies of carbonization and graphitization. In: Thrower, P. A. (ed.), Chemistry and Physics of Carbon, 22. Dekker, New York, pp. 1-143.
  • 35. Petránek, J. & Pouba, Z., 1951. Dating of the development of the Domica Cave, based on the study of the dark zones in the travertine formations. Sborník Ústředního Ústavu Geologického, 18: 245-272. [In Czech, with English summary.]
  • 36. Pomies, M. P., Menu, M. & Vignaud, C., 1999a. TEM observations of goethite dehydration: Application to archaeological samples. Journal of the European Ceramic Society, 19: 1605-1614.
  • 37. Pomies, M. P., Menu, M. & Vignaud, C., 1999b. Red palaeolitic pigments: Natural hematite or heated goethite? Archaeometry, 41: 275-285.
  • 38. Polette, L. A., Meitzner, G., Yacaman, M. J. & Chianelli, R. R., 2002. Maya blue: application of XAS and HRTEM to materials science in art and archaeology. Microchemical Journal, 71: 167-174.
  • 39. Pósfai, M., Gelencsér, A., Simonics, R., Arató, K., Li, J., Hobbs, P. V. & Buseck, P. R., 2004, Atmospheric tar balls: Particles from biomass and biofuel burning. Journal of Geophysical Research, 109: D06213, doi: 10.1029/2003JD004169.
  • 40. Pósfai, M. & Molnár, A., 2000. Aerosol particles in the troposphere: A mineralogical introduction. Environmental Mineralogy, 2: 197-252.
  • 41. Roe, M., Plant, S., Henderson, J., Andreescu-Treadgold, I. & Brown, P. D., 2006. Characterisation of archaeological glass mosaics by electron microscopy and X-ray microanalysis. Journal of Physics: Conference Series, 26: 351-354.
  • 42. Rouzaud, J. N. & Clinard, C., 2002. Quantitative high resolution transmission electron microscopy: A promising tool for carbon materials characterization. Fuel Processing Technology, 77-78: 229-235.
  • 43. Rouzaud, J. N., Deldicque, D., Charon, É. & Pageot, J., 2015. Carbons at the heart of questions on energy and environment: A nanostructural approach. Comptes Rendus Geoscience, 347: 124-133.
  • 44. Rouzaud, J. N., Duber, S., Pawlyta, M., Cacciaguerra, T. & Clinard, C., 2004. TEM study of carbon nanoparticles. Relationships multiscale organization - properties. Proceedings of the American Carbon Society.
  • 45. Soják, M., 2008. Cave settlement. In: Jákal, J. & Bella, P. (eds), Caves of the World Heritage in Slovakia. Liptovský Mikuláš: Správa Slovenských Jaskýň, pp. 109-122.
  • 46. Spence, J. C. H., 2003. High-Resolution Electron Microscopy. Oxford University Press, Oxford, 403 pp.
  • 47. Steelman, K. L., Rowe, M. W., Boutton, T. W., Southon, J. R., Merrell, C. L. & Hill, R. D., 2002. Stable isotope and radiocarbon analyses of black deposits associated with pictographs at Little Lost River Cave, Idaho. Journal of Archaeological Sciences, 29: 1189-1198.
  • 48. Šebela, S., Miler, M., Skobe, S., Torkar, S. & Zupancic, N., 2015. Characterization of black deposits in karst caves, examples from Slovenia. Facies, 61, 6, doi: 10.1007/s10347-015- 0430-z.
  • 49. Vander Wal, R. L., Yezerets, A., Currier, N. W., Kim, D. H. & Wang, C. M., 2007. HRTEM Study of diesel soot collected from diesel particulate filters. Carbon, 45: 70-77.
  • 50. Vermilion, M. R., Krekelerb, M. P. S. & Keeleya, L. H., 2003. Pigment identi cation on two Moorehead phase Ramey knives from the Loyd site, a prehistoric Mississippian homestead. Journal of Archaeological Science, 30: 1459-1467.
  • 51. Watson, P. J., 1966. Prehistoric miners of Salt Cave, Kentucky. Archaeology, 19: 237-243.
  • 52. Williams, D. B. & Carter, C. B., 2009. The Transmission Electron Microscope. A Textbook for Materials Science. Springer, New York, 804 pp.
  • 53. Zupancic, N., Šebela, S. & Miler, M., 2011. Mineralogical and chemical characteristics of black coatings in Postojna Cave System. Acta Carsologica, 40: 307-317.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5befa7ca-fa73-4cf3-bb1d-3d68296ff30c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.