PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Condensation enhancement by means of electrohydrodynamic techniques

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Short state-of-the-art on the enhancement of condensation heat transfer techniques by means of condensate drainage is presented in this paper. The electrohydrodynamic (EHD) technique is suitable for dielectric media used in refrigeration, organic Rankine cycles and heat pump devices. The electric field is commonly generated in the case of horizontal tubes by means of a rod-type electrode or mesh electrodes. Authors proposed two geometries in the presented own experimental investigations. The first one was an electrode placed just beneath the tube bottom and the second one consisted of a horizontal finned tube with a double electrode placed beneath the tube. The experimental investigations of these two configurations for condensation of refrigerant R-123 have been accomplished. The obtained results confirmed that the application of the EHD technique for the investigated tube and electrode arrangement caused significant increase in heat transfer coefficient. The condensation enhancement depends both on the geometry of the electrode system and on the applied voltage.
Rocznik
Strony
3--27
Opis fizyczny
Bibliogr. 24 poz., il.
Twórcy
  • Bialystok University of Technology, Wiejska 45A, 15-351 Bialystok, Poland
autor
  • The Szewalski Institute of Fluid-Flow Machinery, Polish Academy of Sciences, Fiszera 14, 80-231 Gdańsk, Poland
autor
  • The Szewalski Institute of Fluid-Flow Machinery, Polish Academy of Sciences, Fiszera 14, 80-231 Gdańsk, Poland
Bibliografia
  • [1] Hewitt G.F. (Ed.): Handbook of Heat Exchanger Design, Begell House, New York 1992.
  • [2] Bergles A.E.: Heat transfer enhancement – the encouragement and accommodation of high heat fluxes. T. ASME, J. Heat Trans. 119(1997), 8–19.
  • [3] Webb R.L.: Principles of Enhanced Heat Transfer, John Wiley and Sons, New York 1994.
  • [4] Marto P.J.: An evaluation of film condensation on horizontal integral-fin tubes. T. ASME J. Heat Trans. 110(1988), 1287–1305.
  • [5] Gregorig R.: Hautkondensation an feingewellten Oberflächen bei Berücksichtigung der Oberflächenspannungen. Z. Angew. Math. Phys. 5(1954), 36–49.
  • [6] Honda H., Nozu S., Mitsumori K.: Augumentation of condensation on horizontal finned tubes by attaching a porous drainage strip. In: Proc. ASME-JSME Thermal Eng. Joint Conf. (Y. Mori and W.-J. Yang, Eds.) 3(1983), 289–296.
  • [7] Rudy T.M., Webb R.L.: An analitycal model to predict condensate retention on horizontal integral-fin tubes. T. ASME J. Heat Trans. 107(1985), 361–368.
  • [8] Webb R.L., Rudy T.M., Kedzierski M.A.: Prediction of the condensation coefficient on horizontal integral-fin tubes. ASME J. Heat Transfer,107(1985), 369–376.
  • [9] Butrymowicz D., Trela M., Karwacki J.: Enhancement of condensation heat transfer by means of passive and active condensate drainage techniques. Int. J. Refrig. 26(2003), 473–484.
  • [10] Honda H., Nozu S., Takeda Y.: A theoretical model of film condensation in a bundle of a horizontal lowfinned tubes. T. ASME, J. Heat Trans. 119(1989), 2, 525–532.
  • [11] Yu Z., Al.-Dadah R.K., Winterton R.H.S.: A theoretical investigation of electrohydrodynamically (EHD) enhanced condensation heat transfer. In: Proc. Int. Con. Two-Phase Flow Modeling and Experimentation, Pisa 1999, 1, 463–472.
  • [12] Tanasawa I.: Recent advances in condensation heat transfer. In: Proc. Int. Heat Transfer Conf., Brighton 1994, 1, 297–312.
  • [13] Allen P.H.G., Karayiannis T.G.: Electrohydrodynamic enhancement of heat transfer and fluid flow. Heat Recov. Syst. CHP 15(1995), 5, 389–423.
  • [14] Velkoff H.R., Miller J.H.: Condensation of vapor on a vertical plate with a transverse electrostatic field. T. ASME, J. Heat Trans. (1965), 197–201.
  • [15] Choi H.Y.: Electrohydrodynamic condensation heat transfer. T. ASME, J. Heat Transf. (1968), 98–102.
  • [16] Holmes R.E., Chapman A.J.: Condensation of Freon-114 in the presence of a strong nonuniform alternating electric field. T. ASME, J. Heat Trans. (1970), 616–620.
  • [17] Seth A.K., Lee L.: The effect of an electric field in the presence of noncondensable gas on film condensation heat transfer. T. ASME, J. Heat Trans. (1974), 257–258.
  • [18] Didkovsky A.B. Bologa, M.K.: vapor film condensation heat transfer and hydrodynamics under the influence of an electric field. Int. J. Heat Mass Trans. 24(1981), 5, 811–819.
  • [19] Bologa M.K., Korovkin V.P., Savin I.K.: Mechanism of condensation heat transfer enhancement in an electric field and the role of capillary processes. Int. J. Heat Mass Trans. 38(1995), 1, 175–182.
  • [20] Cooper P.: Practical design aspects of EHD heat transfer enhancement in evaporators. ASHRAE Trans. 98(1992), 2, 445–454.
  • [21] Butrymowicz D., Karwacki J., Trela M.: Investigation of condensation on horizontal tubes with electrohydrodynamic condensate drainage. Rep. IFFM PAS 523/1482/2002, Gdańsk 2002 (in Polish).
  • [22] Briggs D.E., Young E.H.: Modified Wilson plot techniques for obtaining heat transfer correlations for shell and tube heat exchangers. Chem. Eng. Progres. Symp., Ser. 92, 65(1969), 35–45.
  • [23] Madejski J.: Theory of Heat Transfer. Szczecin 1998 (in Polish).
  • [24] Butrymowicz D., Trela M., Karwacki J.: Enhancement of condensation heat transfer by means of EHD condensate drainage. Int. J. Therm. Sci. 41(2002), 646–657.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5bee7115-fa27-4cd6-b22b-6dcde697d68c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.