PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Investigate the Metallurgical, Degradation Behavior, and Mechanical Characteristics of a Novel Magnesium Alloy

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Today, the use of magnesium alloys in medical applications as a decomposing material is extensive, so a new magnesium alloy Mg-2Al-1Nd was prepared by an investment-casting method in a medium protected from atmospheric oxygen. One of the rare elements, Nd, was added to improve the microstructural and mechanical properties and corrosion resistance in simulated blood plasma media. The XRF test determined the chemical characterization elements, the SEM test was used to identify the distribution of phases and their shape inside the base before and after heat treatment, and the XRD test was conducted to determine the type of phases that formed and the effect of these phases on other properties was studied. Also, hardness was measured using Vickers microhardness, in which the improvement rate was 75%, and a compression test to determine the mechanical properties of the prepared alloy found that the modulus of elasticity was 42GPa.To study its corrosive behavior inside the human body, a test was conducted on corrosion by the Tafel method to measure corrosion resistance in simulated blood plasma solution, Where the value of the corrosion rate of the alloy after the heat treatment became 0.089mm/y and Rp equal 4.13KΩ/cm2, These results made the new magnesium alloy a good candidate for use in temporary medical applications.
Twórcy
  • College of Materials Engineering, University of Babylon, Babylon, Iraq
  • College of Materials Engineering, University of Babylon, Babylon, Iraq
Bibliografia
  • 1. Bettles C.J., Moss M., and R. Lapovok, A Mg–Al– Nd alloy produced via a powder metallurgical route, Materials Science and Engineering: A, 515(1-2), 2009, 26-31.
  • 2. Jiang N., Lei C., Linggang M., Canfeng F., Hai H., Zhang X., Effect of neodymium, gadolinium addi- tion on microstructure and mechanical properties of AZ80 magnesium alloy, Journal of Rare Earths, 34(6), 2016, 632-637.
  • 3. X. Wang, Y. Lin, Z. Liu, and S. Liu, Improving mechanical properties of a cast Al–Mg alloy with high Mg content by rapid solidification, Materials Science and Engineering: A, 2022, 852, #143709.
  • 4. S. Mishra, A. Chaubey, and A. Mandal, Effect of heat treatment on the microstructure of Mg-4Al-Nd alloys, Technologies, 2017, 5(2), 23. doi: https://doi. org/10.3390/technologies5020023.
  • 5. Moreno I., Nandy T., Jones J., Allison J., Pollock T., Microstructural stability and creep of rare-earth containing magnesium alloys,Scripta Materialia, 48(8), 2003, 1029-1034.
  • 6. G. Gaurav and P. Chakraborty, Effect of annealing on the microstructure evolution of cold-rolled Mg- 6Al-3Sn alloy, Materials Today: Proceedings, 2022.
  • 7. Wang Y.-x., Fu J.-w., and Yang Y.-s., Effect of Nd addition on microstructures and mechanicalproperties of AZ80 magnesium alloys, Transactions of Nonferrous Metals Society of China, 22(6), 2012, 1322-1328.
  • 8. Feng L., Dong X., Cai Q., Wang B., Ji S., Effect of Nd on the Microstructure and Mechanical Properties of Mg-La-Ce Alloys at Ambient and Elevated Temperatures, Journal of Materials Engineering and Performance, 2022, 1-9.
  • 9. Somasundaram M., NarendraKumar U., Microstructural and Mechanical Properties of a Heat-Treated EV31A Magnesium Alloy Fabricated Using the Stir- Casting Process, Crystals, 12(8), 2022, 1163.
  • 10. Zhang J. et al., Effect of Nd on the microstructure, mechanical properties and corrosion behavior of die-cast Mg–4Al-based alloy, Journal of Alloys and Compounds, 464(1-2), 2008, 556-564.
  • 11. Nouri M., The Effect of Yttrium on Wear, Corrosion and Corrosive Wear of Mg-Al Alloys, 2017.
  • 12. Liu X. et al., Effect of carbon interface on adhesion and anti-corrosion properties of hydroxyapatite coating on AZ31 magnesium alloy, Materials Chemistry and Physics, #126351, 2022.
  • 13. Veeranjaneyulu I., Chittaranjan Das V., and Karumuri S., Enhancing the Mechanical Properties of AZ31D Alloy by Reinforcing Nanosilicon Carbide/ Graphite, Journal of Nanomaterials, vol. 2023.
  • 14. Astm G., Standard practice for calculation of corrosion rates and related information from electrochemical measurements, G102-89, 2004, doi: 10.1520/G0102-89R15E01
  • 15. Shinde S. and Sampath S., A Critical Analysis of the Tensile Adhesion Test for Thermally Sprayed Coat- ings, Journal of Thermal Spray Technology, 31(8), 2022, 2247-2279. doi: https://doi.org/10.1007/ s11666-022-01468-z.
  • 16. Mena-Morcillo E., Veleva L., Degradation of AZ31 and AZ91 magnesium alloys in different physiological media: Effect of surface layer stability on electrochemical behaviour, Journal of Magnesium and Alloys, 8(3), 2020, 667-675.
  • 17. Witte F. et al., In vitro and in vivo corrosion measurements of magnesium alloys, Biomaterials, 27(7), 2006, 1013-1018.
  • 18. Da Silva C.G., Monteiro J.R., Oshiro-Júnior J.A., Chiavacci L.A., Hybrid Membranes of the Ureasil- Polyether Containing Glucose for Future Application in Bone Regeneration, Pharmaceutics, 15(5), 2023, 1474.
  • 19. Bordbar-Khiabani A., Yarmand B., Mozafari M., Enhanced corrosion resistance and in-vitro biodegradation of plasma electrolytic oxidation coatings prepared on AZ91 Mg alloy using ZnO nanoparticles-incorporated electrolyte, Surface and Coatings Technology, 360, 2019, 153-171. doi: https://doi. org/10.1016/j.surfcoat.2019.01.002.
  • 20. Sasikumar Y., Solomon M., Olasunkanmi L., and Ebenso E., Effect of surface treatment on the bioactivity and electrochemical behavior of magnesium alloys in simulated body fluid, Materials and Corrosion, 68(7), 2017, 776-790.
  • 21. Cui X., Yu Z., Liu F., Du Z., and Bai P., Influence of secondary phases on crack initiation and propagation during fracture process of as-cast Mg-Al-Zn-Nd alloy, Materials Science and Engineering: A, 759, 2019, 708-714.
  • 22. Zerankeshi M.M., Alizadeh R., Gerashi E., Asadollahi M., Langdon T.G., Effects of heat treatment on the corrosion behavior and mechanical properties of biodegradable Mg alloys, Journal of Magnesium and Alloys, 2022.
  • 23. Heakal F.E.-T., Bakry A.M., Corrosion degradation of AXJ530 magnesium alloy in simulated pysiological fluid and its mitigation by fluoride and chitosan coatings for osteosynthetic applications, Int. J. Electrochem. Sci, 13(8), 2018, 7724-7747. doi: https:// doi.org/10.20964/2018.08.67
  • 24. Wang P., He W., Xu H., Phase Equilibria at 500ºC of the Mg-Nd-Zn System in the Region of 0-50 At% Nd. Available at SSRN 4484066.
  • 25. Gerengi H., Cabrini M., Solomon M.M., Kaya E., Understanding the corrosion behavior of the AZ91D alloy in simulated body fluid through the use of dynamic EIS, ACS omega, 7(14), 2022, 11929-11938.
  • 26. Topuz M., Hydroxyapatite–Al2O3 reinforced poly(lactic acid) hybrid coatings on magnesium: characterization, mechanical and in-vitro bioactivity properties, Surfaces and Interfaces, 37, 2023, 102724.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5bec08c1-5802-47c9-aece-be6a8e54c27a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.