PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A CFD investigation of intra-aortic balloon pump assist ratio effects on aortic hemodynamics

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Intra-aortic balloon pump (IABP) is a mechanical circulatory support approach used in case of several cardiac diseases and a challenge of IABP therapy is the weaning process accomplished by decreasing the assist ratio. However, the impact of weaning on aortic hemodynamics on organs perfusions is not well known. Aim of this study was to evaluate and compare the global effects of IABP assistance frequencies on hemodynamics and perfusions in a patient-specific geometry by means of the computational fluid dynamics (CFD). A 3D aorta model was obtained from CT images using segmentation and reverse engineering techniques. The balloon was modeled and positioned in the descending aorta as in clinical practice and its inflation/deflation behavior was realized with a parametric study. Four assist ratios have been investigated: full assistance (1:1), partial assistances (1:2 and 1:3) and weak assistance (1:4). To perform the comparison, same boundary conditions were applied. Our results highlighted that the presence of balloon in aorta modifies significantly its hemodynamics and that the four assist ratios generate different perfusions in the human districts. Data suggested also that the biggest difference occurs between 1:2 and 1:3 frequencies and that 1:4 ratio is more suitable for the weaning of counterpulsation treatment than the 1:3 ratio. This first CFD analysis of IABP weaning increases information and knowledge on hemodynamics and organs perfusions.
Twórcy
  • ‘‘Magna Graecia’’ University, Viale Europa, Catanzaro 88100, Italy
  • IBFM, National Research Council, Catanzaro, Italy; Neuroscience Research Centre, ‘‘Magna Graecia’’ University, Catanzaro, Italy
  • Bioengineering Unit, Department of Medical and Surgical Science, ‘‘Magna Graecia’’ University, Catanzaro, Italy
Bibliografia
  • [1] Bolooki H. Clinical application of intra-aortic balloon pump. 3rd ed. Wiley-Blackwell; 1998.
  • [2] Thiele H, Allam B, Chatellier G, Schuler G, Lafont A. Shock in acute myocardial infarction: the Cape Horn for trials? Eur Heart J 2010;31(15):1828–35. http://dx.doi.org/10.1093/eurheartj/ehq220.
  • [3] Papaioannou TG, Stefanadis C. Basic principles of the intraaortic balloon pump and mechanisms affecting its performance. ASAIO J 2005;51:296–300.
  • [4] Krishna M, Zacharowski K. Principles of intra-aortic balloon pump counterpulsation. Continuing education in anaesthesia. Crit Care Pain 2009;9(1):24–8. http://dx.doi.org/10.1093/bjaceaccp/mkn051.
  • [5] Trost JC, Hillis LD. Intra-aortic balloon counterpulsation. Am J Cardiol 2006;97(9):1391–8.
  • [6] Rastan AJ, Tillmann E, Subramanian S, Lehmkuhl L, Funkat AK, Leontyev S, et al. Visceral arterial compromise during intra-aortic balloon counterpulsation therapy. Circulation 2010;122(11 (Suppl 1)):S92–9. http://dx.doi.org/10.1161/CIRCULATIONAHA.109.929810.
  • [7] Tapia GP, Zhu X, Liang P, Su G, Liu H, Li S. IABP ballooning in Chinese patients. Acta Med 2015;2(1):79–83. http://dx.doi.org/10.5530/ami.2015.1.12.
  • [8] Parissis H, Soo A, Leotsinidis M, Dougenis D. A statistical model that predicts the length from the left subclavian artery to the celiac axis; towards accurate intra aortic balloon sizing. J Cardiothorac Surg 2011;6(1):95. http://dx.doi.org/10.1186/1749-8090-6-95.
  • [9] Sukhodolya T, Damjanovic D, Beyersdorf F, Benk C, Heilmann C, Blanke P, et al. Standard intra-aortic counterpulsation balloon may cause temporary occlusion of mesenterial and renal arteries. ASAIO J 2013;59(6):593–9.
  • [10] Gelsomino S, Lozekoot PW, Lorusso R, De Jong MJ, Parise O, Matteucci F, et al. The optimal weaning strategy for intraaortic balloon counterpulsation: volume-based versus rate-based approach in an animal model. Ann Thorac Surg 2016;101(4):1485–93. http://dx.doi.org/10.1016/j.athoracsur.2015.10.010.
  • [11] Gelsomino S, Renzulli A, Rubino AS, Romano SM, Lucà F, Valente S, et al. Effects of 1:1, 1:2 or 1:3 intra-aortic balloon counterpulsation/heart support on coronary haemodynamics and cardiac contractile efficiency in an animal model of myocardial ischaemia/reperfusion. Eur J Cardiothorac 2012;42(2):325–32. http://dx.doi.org/10.1093/ejcts/ezr327.
  • [12] Santa-Cruz RA, Cohen MG, Ohman EM. Aortic counterpulsation: a review of the hemodynamic effects and indications for use. Catheter Cardiovasc Interv 2006;67(1):68–77.
  • [13] Fuchs RM, Brin KP, Brinker JA, Guzman PA, Heuser RR, Yin FC. Augmentation of regional coronary blood flow by intra-aortic balloon counterpulsation in patients with unstable angina. Circulation 1983;68(1):117–23.
  • [14] Morris PD, Narracott A, von Tengg-Kobligk H, Soto DAS, Hsiao S, Lungu A, et al. Computational fluid dynamics modelling in cardiovascular medicine. Heart 2016;102 (1):18–28. http://dx.doi.org/10.1136/heartjnl-2015-308044.
  • [15] Caruso MV, Renzulli A, Fragomeni G. Influence of IABP-induced abdominal occlusions on aortic hemodynamics: a patient-specific computational evaluation. ASAIO J 2017;63 (2):161–7. http://dx.doi.org/10.1097/MAT.0000000000000479.
  • [16] Tse KM, Chang R, Lee HP, Lim SP, Venkatesh SK, Ho P. A computational fluid dynamics study on geometrical influence of the aorta on haemodynamics. Eur J Cardiothorac Surg 2012;43(4):829–38.
  • [17] Karmonik C, Partovi S, Loebe M, et al. Influence of LVAD cannula outflow tract location on hemodynamics in the ascending aorta: a patient-specific computational fluid dynamics approach. ASAIO J 2012;58:562–7.
  • [18] Zhang Q, Gao B, Chang Y. The study on hemodynamic effect of series type LVAD on aortic blood flow pattern: a primary numerical study. Biomed Eng Online 2016;15 (2):293–307. 163.
  • [19] Schmidt RF, Thews G. Human physiology. Springer Science & Business Media; 2012.
  • [20] Kolyva C, Biglino G, Pepper JR, Khir AW. A mock circulatory system with physiological distribution of terminal resistance and compliance: application for testing the intra-aortic balloon pump. Artif Organs 2012;36(3):E62–70. http://dx.doi.org/10.1111/j.1525-1594.2010.01071.x.
  • [21] Caruso MV, Gramigna V, Rossi M, Serraino GF, Renzulli A, Fragomeni G. A computational fluid dynamics comparison between different outflow graft anastomosis locations of Left Ventricular Assist Device (LVAD) in a patient-specific aortic model. Int J Numer Methods Biomed 2015;31(2):e02700. http://dx.doi.org/10.1002/cnm.2700.
  • [22] Maquet Getinge Group. Product catalog. Cardiac assist. United States ed. 2015, https://www.maquet.com/globalassets/downloads/ products/shared-cardiac-assist/us/ ca-product-catalog-revb-ch036346.pdf.
  • [23] Caruso MV, Gramigna V, Renzulli A, Fragomeni G. Computational analysis of aortic hemodynamics during total and partial extracorporeal membrane oxygenation and intra-aortic balloon pump support. Acta Bioeng Biomech 2016;18(3):3–9.
  • [24] Formaggia L, Quarteroni AM, Veneziani A. Cardiovascular mathematics (No. CMCSBOOK-2009-001). Milan: Springer; 2009.
  • [25] Onorati F, Santini F, Amoncelli E, Campanella F, Chiominto B, Faggian G, et al. How should I wean my next intra-aortic balloon pump? Differences between progressive volume weaning and rate weaning. J Thorac Cardiovasc Surg 2013;145(5):1214–21.
  • [26] Parissis H, Graham V, Lampridis S, Lau M, Hooks G, Mhandu PC. IABP: history-evolution-pathophysiology-indications: what we need to know. J Cardiothorac Surg 2016;11(1):122.
  • [27] Vignon-Clementel IE, Figueroa CA, Jansen KE, Taylor CA. Outflow boundary conditions for three-dimensional finite element modeling of blood flow and pressure in arteries. Comput Methods Appl Mech Eng 2006;195(29–32):3776–96.
  • [28] Lawford PV, Ventikos Y, Khir AW, et al. Modelling the interaction of haemodynamics and the artery wall: Current status and future prospects. Biomed Pharmacother 2008;62:530–5.
  • [29] Warboys CM, Amini N, de Luca A, Evans PC. The role of blood flow in determining the sites of atherosclerotic plaques. F1000 Med Rep 2011;3.
  • [30] Malek AM, Alper SL, Izumo S. Hemodynamic shear stress and its role in atherosclerosis. JAMA 1999;282(21):2035–42.
  • [31] Gelsomino S, Lozekoot PW, Lorusso R, De Jong MM, Parise O, Matteucci F, et al. Short intra-aortic balloon pump in a swine model of myocardial ischaemia: a proof-of-concept study. Eur J Cardiothorac 2015;ezv271.
  • [32] Rosen CL, Sekhar LN, Duong DH. Use of intra-aortic balloon pump counterpulsation for refractory symptomatic vasospasm. Acta Neurochir 2000;142(1):25–32.
  • [33] Pfluecke C, Christoph M, Kolschmann S, Tarnowski D, Forkmann M, Jellinghaus S, et al. Intra-aortic balloon pump (IABP) counterpulsation improves cerebral perfusion in patients with decreased left ventricular function. Perfusion 2014;29(6):511–6. http://dx.doi.org/10.1177/0267659114525218.
  • [34] Caruso MV, Serra R, Perri P, Buffone G, Calio FG, de Franciscis S, et al. A computational evaluation of sedentary lifestyle effects on carotid hemodynamics and atherosclerotic events incidence. Acta Bioeng Biomech 2017;19(3):43–52.
  • [35] Boussel L, Rayz V, McCulloch C, Martin A, Acevedo-Bolton G, Lawton M, et al. Aneurysm growth occurs at region of low wall shear stress. Stroke 2008;39(11):2997–3002.
  • [36] Reymond P, Crosetto P, Deparis S, Quarteroni A, Stergiopulos N. Physiological simulation of blood flow in the aorta: comparison of hemodynamic indices as predicted by 3-D FSI, 3-D rigid wall and 1-D models. Med Eng Phys 2013;35(6):784–91.
  • [37] Gray RA, Pathmanathan P. Patient-specific cardiovascular computational modeling: diversity of personalization and challenges. J Cardiovasc Transl Res 2018;11(2):80–8. http://dx.doi.org/10.1007/s12265-018-9792-2.
  • [38] Gaudio LT, De Rosa S, Indolfi C, Caruso MV, Fragomeni G. Hemodynamically non-significant coronary artery stenosis: a predictive model. Proceedings of the International Workshop on Innovative Simulation for Health Care; 2017. p. 26–30. ISBN 978-88-9-979989-8.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5be6046b-0f6c-43bc-a6e6-ac81305bb5ad
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.