PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Bubbling properties of frothers and collectors mix system

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper studies the effect of the type and concentration of selected frothers and collectors mix system on the bubble sizes (Sauter mean diameter, SMD) of bubbling flow produced in a micro flotation cell and the determination of bubble size distribution (BSD). The usage of dodecyl amine hydrochloride (DAH) collector on the critical coalescence concentration of commercial frothers PPG200, PPG400, and PPG600 was investigated in detail. The results of these studies showed that the usage of DAH decreased the CCC of these frothers. Each frother + collector mixing system exhibited its unique ability in preventing coalescence of the bubbles in the order of PPG200 < PPG400 < PPG600. The factorial experiments established that the type of the frother, collector, and their concentration had a major effect on the size of the bubbles. The BSD in the presence of PPG600 + DAH mix system resulted in a little bit wider BSD which indicated the effect of frother type in mixed systems.
Rocznik
Strony
art. no. 152890
Opis fizyczny
Bibliogr. 25 poz., rys., tab., wykr.
Twórcy
  • Istanbul University-Cerrahpaşa, Mining Engineering Department, 34500, Istanbul, Turkey
autor
  • Adana Alparslan Türkeş Science and Technology University, Mining Engineering Department, 01700, Adana, Turkey
  • Istanbul University-Cerrahpaşa, Mining Engineering Department, 34500, Istanbul, Turkey
  • Sofia University, Physical Chemistry Department, “St. Kliment Ohridski”, Sofia 1164, Bulgaria
  • Sofia University, Physical Chemistry Department, “St. Kliment Ohridski”, Sofia 1164, Bulgaria
  • Istanbul Technical University, Mineral Processing Engineering Department, 34469, Istanbul, Turkey
  • Istanbul Technical University, Mineral Processing Engineering Department, 34469, Istanbul, Turkey
  • Harran University, Rectorate, Şanlıurfa, Turkey
Bibliografia
  • BATJARGAL, K., GUVEN, O., OZDEMIR, O., KARAKASHEV, S.I., GROZEV, N.A., BOYLU, F., ÇELIK, M.S., 2021. Adsorption kinetics of various frothers on rising bubbles of different sizes under flotation conditions. Minerals, 11(3), 304.
  • CORONA-ARROYO, M.A., LOPEZ-VALDIVIESO, A., LASKOWSKI, J.S., ENCINAS-OROPESA, A., 2015. Effects of frothers and dodecylamine on bubble size and gas holdup in a downflow column. Miner. Eng., 81,109-115.
  • CHO, Y.S., LASKOWSKI, J.S., 2002. Effect of flotation frothers on bubble size and foam stability. Int. J. Miner. Process. 64, 69–80.
  • ELMAHDY, A.M., FINCH, J.A., 2013. Effect of frother blends on hydrodynamic properties. Int. J. Miner. Process. 123, 60-63.
  • GOMEZ, C.O., FINCH, J.A., MUÑOZ-CARTES, D., 2011. An approach to characterise frother roles in flotation. In Proceedings of the 8th International Mineral Processing Seminar Procemin, Santiago, Chile, 30 November–2 December, 223–231.
  • GRAU, R.A., LASKOWSKI, J.S., HEISKANEN, K., 2005. Effect of frothers on bubble size. Int. J. Min. Process 76, 225–233.
  • GRAU, R.A., LASKOWSKI, J.S., 2006. Role of frothers in bubble generation and coalescence in a mechanical flotation cell. Can. J. Chem. Eng. 84, 170–182.
  • GUVEN, O., CELIK, M.S., DRELICH, J.W., 2015. Flotation of methylated roughened glass particles and analysis of particle-bubble energy barrier. Miner. Eng. 79, 125–132.
  • GUVEN, O., BATJARGAL, K., OZDEMIR, O., KARAKASHEV, S.I., GROZEV, N.A., BOYLU, F., ÇELIK, M.S., 2020. Experimental procedure for the determination of the critical coalescence concentration (CCC) of simple frothers. Minerals 10, 617.
  • KARAGUZEL, C., 2010. Selective separation of fine albite from feldspathic slime containing colored minerals (Fe-Min) by batch scale dissolved air flotation (DAF). Miner. Eng. 23, 17-24.
  • KARAKASHEV, S.I., GROZEV, N.A., BATJARGAL, K., GUVEN, O., OZDEMIR, O., BOYLU, F., ÇELIK, M.S., 2020. Correlations for easy calculation of the critical coalescence concentration (CCC) of simple frothers. Coatings 10, 612.
  • KOWALCZUK, P.B., DRZYMALA, J., 2016. Physical meaning of the Sauter mean diameter of spherical particulate matter. Particul. Sci. Technol. 34, 645–647.
  • KRACHT, W., REBOLLEDO, H., 2013. Study of the local critical coalescence concentration (l-CCC) of alcohols and salts at bubble formation in two-phase systems. Miner. Eng. 50, 77–82.
  • LEJA, J., 1981. Surface Chemistry of Froth Flotation. Plenum Press: New York.
  • MALDONADO, M., DESBIENS, A., DEL VILLAR, R., GIRGIN, E., GOMEZ, C., 2008. On-line estimation of bubble size distributions using Gaussian mixture models. In Proceedings of the V International Mineral Processing Seminar, Santiago, Chile, 22–24 October, 389–398.
  • MOHAGHEGHIAN, S., ELBING, B.R., 2018. Characterization of bubble size distributions within a bubble column. Fluids 3, 13.
  • NARSIMHAN, G., RUCKENSTEIN, E., 1986. Hydrodynamics, enrichment, and collapse in foams. Langmuir 2, 494.
  • NESSET, J.E., FINCH, J.A., GOMEZ, C.O., 2007. Operating variables affecting the bubble size in forced-air mechanical flotation machines. In Proceedings of the 9th Mill Operators’ Conference 2007, Fremantle, WA, Australia, 19–21 March, 55–65.
  • NGUYEN, P.T., HAMPTON, M.A., NGUYEN, A.V., and BIRKETT, G.R., 2012. The influence of gas velocity, salt type and concentration on transition concentration for bubble coalescence inhibition and gas holdup. Chem. Eng. Res. Des. 2012, 90(1), 33–39.
  • SZYSZKA, D., 2008. Critical coalescence concentration (CCC) for surfactants in aqueous solutions. Minerals 8, 2-10.
  • VAZIRIZADEH, A., BOUCHARD, J., CHEN, Y., 2016. Effect of particles on bubble size distribution and gas hold-up in column flotation. Int. J. Miner. Process. 157, 163–173.
  • WELSBY, S.D.D., 2014. Pilot-scale froth testing at Highland Valley Copper. In Proceedings of the 46th Annual Meeting of the Canadian Mineral Processors Conference, Ottawa, ON, Canada, 21–23 January, 301–314.
  • WILLS, B.A., FINCH, J., 2016. Wills’ Mineral Processing Technology. An Introduction to the Practical Aspects of Ore Treatment and Mineral Recovery, eighth ed.
  • ZANGOOI, A., GOMEZ, C.O., FINCH, J.A., 2017. Mapping frother distribution in industrial flotation circuits. Miner. Eng. 113, 36–40.
  • ZHANG, W., NESSET, J.E., FINCH, J.A., 2010. Water recovery and bubble surface area flux in flotation. Can. Metall. Q. 49, 353–362.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5be42869-33ca-4ba4-83b4-80e65cbd8248
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.