PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Heavy metals accumulation in silver fir needles in Swietokrzyski National Park

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The article demonstrates the results of the research studies related to the air polluted with heavy metals in the area of Swietokrzyski National Park. The two-year-old needles of Abies alba (Mill) were used as the bioindicator with the intention of carrying out the research. The studies were conducted in the autumn of 2012. The results showed the spatial variability of concentrations in the range of the analysed metal deposition patterns in the needles of Abies alba (Mill). The average content of the analysed elements seemed to be the highest in the case of zinc (26.6 mg·kg–1 d.m.), strontium (6.5 mg·kg–1 d.m.) and nickel (1.6 mg·kg–1 d.m.). The research studies revealed that the significant role in determining the content of heavy metals in the two-year-old needles was played by the communication. The highest values were recorded at the research sites situated in the immediate neighbourhood of the voivodeship roads. It was also confirmed that the content of metals was influenced by the so-called low emission from the household and welfare sector together with the remote imission.
Rocznik
Strony
65--72
Opis fizyczny
Bibliogr. 26 poz., il., tab.
Twórcy
  • The Jan Kochanowski University, Institute of Geography and Environmental Sciences, ul. Uniwersytecka 7, 25-406 Kielce, Poland
  • The Jan Kochanowski University, Institute of Geography and Environmental Sciences, ul. Uniwersytecka 7, 25-406 Kielce, Poland
Bibliografia
  • [1] Kabata-Pendias A, Szteke B. Trace Elements in Abiotic and Biotic Environments. Boca Raton, London New York: CRC Press Taylor Francis Group; 2015. DOI: 10.1201/b18198.
  • [2] Kłos A, Rajfur M, Sramek I, Wacławek M. Mercury concentration in lichen, moss and soil samples collected from the forest areas of Praded and Glacensis Euroregions (Poland and Czech Republic). Environ Monit Assess. 2012;184(11):6765-74. DOI: 10.1007/s10661-011-2456-1.
  • [3] Kłos A, Ziembik Z, Rajfur M, Dołhańczuk-Śródka A, Bochenek Z, Bjerke JW, et al. Using moss and lichens in biomonitoring of heavy-metal contamination of forest areas in southern and north-eastern Poland. Sci Total Environ. 2018;627(15):438-49. DOI: 10.1016/j.scitotenv.2018.01.211.
  • [4] Konopka Z, Ścisłowski P, Rajfur M. Biomonitoring of atmospheric aerosol with the use of Apis mellifera and Pleurozium schreberi. Chem Didact Ecol Metrol. 2019;24(1-2):107-16. DOI: 10.2478/CDEM-2019-0009.
  • [5] Kozłowski R, Szwed M, Żukowski W. Pine needles as bioindicator of pollution by trace elements from cement-limestone industry in central eastern Poland. Carpath J Earth Environ Sci. 2019;14(2):541-9. DOI: 10.26471/cjees/2019/014/102.
  • [6] Świsłowski P, Kosior G, Rajfur M. The influence of preparation methodology on the concentrations of heavy metals in Pleurozium schreberi moss samples prior to use in active biomonitoring studies. Environ Sci Pollut Res. 2020. DOI: 10.1007/s11356-020-11484-7.
  • [7] Rajfur M, Świsłowski P, Nowalinski F, Śmiechowicz B. Mosses as biomonitor of air pollution with analytes originating from tobacco smoke. Chem Didact Ecol Metrol. 2018;23(1-2):127-36. DOI: 10.1515/cdem-2018-0008.
  • [8] Kłos A. Lichens - a bioindicator and biomonitor of environment pollution. Chem Didact Ecol Metrol. 2007;12(1-2):61-77.
  • [9] Staszewski T, Łukasik W, Kubiesa P. Contamination of Polish national parks with heavy metals. Environ Monit Assess. 2012;(184):4597-608. DOI: 10.1007/s10661-011-2288-z.
  • [10] Kozłowski R, Jóźwiak M, Jóźwiak MA, Rabajczyk A. Chemism of atmospheric precipitation as a consequence of air pollution: the case of Poland’s Holy Cross Mountains. Polish J Environ Stud. 2011;20(4):919-24. Available from: http://www.pjoes.com/Chemism-of-Atmospheric-Precipitation-r-nas-a-Consequence-of-Air-Pollution-the-Case,88634,0,2.html.
  • [11] Kozłowski R. Funkcjonowanie wybranych geoekosystemów Polski w warunkach zróżnicowanej antropopresji na przykładzie gór niskich i pogórza (The functioning of selected Polish geoecosystems under diverse anthropopressure conditions - the case of low mountains and foothills). Landf Analysis. 2013;23:1-150. Available from: http://sgp.home.amu.edu.pl/la/lav23.htm.
  • [12] Jabłońska M, Janeczek J, Rietmeijer FJM. Seasonal changes in the mineral composition of tropospheric dust in the industrial region of Upper Silesia Poland. Mineralogical Mag. 2009;67(6):1231-41. DOI: 10.1180/0026461036760161.
  • [13] Teper E. Dust-particle migration around flotation tailings ponds: Pine needles as passive samplers. Environ Monit Assess. 2009;(154):383-91. DOI: 10.1007/s10661-008-0405-4.
  • [14] Steinnes E, Friedland AJ. Metal contamination of natural surface soils from long-range atmospheric transport: existing and missing knowledge. Environ Rev. 2006;14(3):169-86. DOI: 10.1139/A06-002.
  • [15] Sarris A, Kokinou E, Aidona E, Kallithrakas-Kontos N, Koulouridakis P, Kakoulaki G, et al. Environmental study for pollution in the area of megalopolis power plant (Peloponnesos, Greece). Environ Geol. 2009;58:1769-83. DOI: 10.1007/s00254-008-1676-3.
  • [16] Gandois L, Nicolas M, Vander Heijdend G, Probst A. The importance of biomass net uptake for a trace metal budget in a forest stand in north-eastern France. Sci Total Environ. 2010;408(23):5870-7. DOI: 10.1016/j.scitotenv.2010.07.061.
  • [17] Sevel L, Hansen H, Raulund-Rasmussen K. Mass balance of cadmium in two contrasting oak forest ecosystems. J Environ Qual. 2009;38(1):93-102. DOI: 10.2134/jeq2007.0430.
  • [18] Mętrak M, Aneta E, Wiłkomirski B, Staszewski T, Suska-Malawska M. Interspecific differences in foliar 1 PAHs load between Scots pine, birch, and wild rosemary from three Polish peat bogs. Environ Monit Asses. 2016;188(8):456. DOI: 10.1007/s10661-016-5465-2.
  • [19] Strzyż M. Góry Świętokrzyskie (342.34-35) In: Richling A, Solon J, Balon J, Macias A, Borzyszkowski J, Kistowski M, editors. Regionalna geografia fizyczna Polski (Regional physical geography of Poland). Poznań: Wyd Nauk Bogucki; 2021:420-421. ISBN: 9788379863815.
  • [20] Koz B, Celik N, Cevik U. Biomonitoring of heavy metals by epiphytic lichen species in Black Sea region of Turkey. Ecol Ind. 2010;10(3):762-5. DOI: 10.1016/j.ecolind.2009.11.006.
  • [21] Oliva SR, Rautio P. Could ornamental plants serve as passive biomonitors in urban areas? J Atmos Chem. 2004;49:137-48. DOI: 10.1007/s10874-004-1220-0.
  • [22] Ciężka MM, Górka M, Modelska M, Tyszka R, Samecka-Cymerman A, Lewińska A, et al. The coupled study of metal concentrations and electron paramagnetic resonance (EPR) of lichens (Hypogymnia physodes) from the Świętokrzyski National Park - environmental implications. Environ Sci Pollut Res. 2018;25:25348-62. DOI: 10.1007/s11356-018-2586-x.
  • [23] Gandois L, Probst A. Localization and mobility of trace metal in silver fir needles. Chemosphere. 2012;87:204-10. DOI: 10.1016/j.chemosphere.2011.12.020.
  • [24] Grešíková S, Janiga M. Analysis of S, Cl, K, Ca, Cr, Mn, Fe, Zn, Rb, Sr, Mo, Ba and Pb concentrations in the needles of Abies alba and potential impact of paper mill industry. Oecologia Montana. 2017;26(1):47-55. Available from: https://om.vuvb.uniza.sk/index.php/OM/article/view/293/274.
  • [25] Szymura TH. Concentration of elements in silver fir (Abies alba Mill.) needles as a function of needles’ age. Trees. 2009;23(2).211-7. DOI:10.1007/s00468-008-0268-x.
  • [26] ICP Forests. MANUAL on methods and criteria for harmonized sampling, assessment, monitoring and analysis of the effects of air pollution on forests. Part XII Sampling and Analysis of Needles and Leaves. 2017. Available from: https://www.icp-forests.org/pdf/manual/2016/ICP_Manual_2017_01_part12.pdf.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5be313bd-3146-4478-aec6-ed54f8731d71
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.