
Journal of Polish Safety and Reliability Association

Summer Safety and Reliability Seminars, Volume 9, Number 3, 2018

 101

Walkowiak Tomasz
Wroclaw University of Science and Technology, Faculty of Electronics, Poland

Marcin Pol
Wroclaw University of Science and Technology, Faculty of Computer Science and Management, Poland

Dependability aspects of language technology infrastructure

Keywords

dependability, language technology infrastructure, natural language processing, micro-service architecture,

CLARIN-PL

Abstract

The paper presents dependability analysis of CLARIN-PL Centre of Language Technology (CLT). It describes

infrastructure, high availability aspects and micro-service architecture used in CLARIN-PL applications. Micro-

services architecture improves dependability in respect to availability and reliability and to some extent safety. It

is comprised of the mechanisms of reliable communication of applications, replication, recovery, and transaction

processing. CLT has also a set of components for failure detection, monitoring and autonomic management, and

distributed security policy enforcement.

1. Introduction

The concept of service dependability [1] was intro-

duced to provide a uniform approach to analysing all

aspects of providing a reliable service: hardware faults,

software errors, human mistakes and even deliberate

user misbehaviour. Dependability is defined as the ca-

pability of systems to deliver service that can justifiably

be trusted [1].

Dependability is an integrative concept that encom-

passes: availability (readiness for correct service), reli-

ability (continuity of correct service), safety (absence

of catastrophic consequences), confidentiality (absence

of unauthorized disclosure of information), integrity

(absence of improper system state alterations), main-

tainability (ability to undergo repairs and modifica-

tions) [2].

Micro-service architecture[3] is a recent style of devel-

oping applications that consist of a set of “cohesive,

independent processes interacting via messages” [13].

Therefore, each service is independently created and

implemented. It allows to overcome problems that we

can find in traditional “monolithic” applications like

1 https://www.clarin.eu/

how to maintain large applications, how to fix the er-

rors and remove the failures [6].

CLARIN1 (Common Language Resources and Tech-

nology Infrastructure) is a pan-European research in-

frastructure intended for the humanities and social sci-

ences. CLARIN-PL2 Language Technology Centre

(CLT) has been created as the Polish node of the

CLARIN research infrastructure. It is aimed to support

researchers and students in the fields of Humanities,

Social Sciences and also Computer Science in work

with natural language engineering and text mining. The

platform brings researchers into a manageable, secure

cloud environment. It is a tool that promotes open, cen-

tralized workflows by enabling capturing of different

aspects and products of the research lifecycle, includ-

ing developing a research idea, designing a study, stor-

ing and analysing collected data. In this paper we pre-

sent the dependability aspects of CLT deployed as a set

cooperating micro-services.

CLARIN-PL micro-services are designed in the way to

have a result (for example: processing of one, small text

file) in time less 6 seconds, even if the LTC is busy with

processing huge corpora.

2 https://www.clarin-pl.eu/

Walkowiak Tomasz, Marcin Pol

Dependalibity aspects of language technology infrastructure

 102

2. CLT infrastructure

CLARIN-PL infrastructure consists of three layers

(Fig. 1): web applications, repositories and core micro-

services.

Web applications are aimed to communicate with users

to perform given set of tasks in CLT. Web applications

could be developed in two different styles as Single

Page Applications that communicates with other parts

of CLARIN-PL by REST services or as multitier appli-

cations, where the server side mediates communication

with CLT components. For example: WebSty3 and

LEM4 are SPAs whereas Inforex5 and Mewex6 are 3-

tier applications developed in PHP.

The second layer consists of two repositories:

D-Space and NextCloud. They allow to store corpora

and results of processing. Additionally D-Space repos-

itory is an authorisation manager, which gives users

possibilities to use all applications from the first layer

with one login and password.

The third tier delivers core of micro-services.

It includes single authorisation for the CLARIN-PL

platform, access to pipelines of language and machine

learning tools (NLPServices) and a monitoring module.

Figure 1. CLARIN-PL three layers infrastructure

3. Usage of infrastructure

CLARIN-PL Platform focuses on NLP research tools.

It gives openness, unique identifiers and research data

management. The high degree of flexibility means that

it is possible to easily customise projects to fit a variety

of needs, from small ones to large research collabora-

tions. SS&H researchers can process large text corpora

and easily publish or share results. CLT brings easy de-

posit and sharing functionality allowing processing and

3 http://websty.clarin-pl.eu/
4 http://lem.clarin-pl.eu/

exporting results to web annotation application or

search tools.

Figure 2. Number of tasks processed each month by

CLT services (from September 2018 to March 2018)

Figure 3. Number of files processed each month by

CLT services (from September 2018 to March 2018)

Figure 4. Size of texts processed each month by NLP

services (from September 2018 to March 2018)

The main reason in building CLARIN-PL infrastruc-

ture was in offering SS&H researchers a more direct

5 https://inforex.clarin-pl.eu/
6 https://mewex.clarin-pl.eu/

0

10 000

20 000

30 000

40 000

50 000

60 000

month

n
u

m
b

er
o

f
ta

sk
s

0
50 000

100 000
150 000
200 000
250 000
300 000
350 000
400 000
450 000
500 000

month

n
u

m
b

er
o

f
fi

le
s

0

5

10

15

20

25

month

si
ze

o
f

p
ro

ce
ss

ed
 t

e
xt

s
[G

B
]

Journal of Polish Safety and Reliability Association

Summer Safety and Reliability Seminars, Volume 9, Number 3, 2018

 103

way of using NLP tools in all phases of their projects.

So far, the platform is focused mainly on Polish.

Selected statistics of usage of NLP mirco-services over

the last 7 months are presented in Fig. 2-4. In average,

each day ca.: 750 tasks, 10 000 files (texts) and 230 MB

of texts are processed by users in CLT. The amount of

processed texts each day is equal to amount of 190

pieces of Nobel Prize Henryk Sienkiewicz “Quo Va-

dis” novel. It shows that CLT is extensively used by

researchers and therefore dependability aspects of the

infrastructure is very important.

4. High availability

4.1 Hardware aspects

The CLT is deployed in a private cloud. Hardware con-

sists of nine servers in a mixed rack/blade architecture.

Each server has from 192 to 224 GB of RAM, which

gives a total of almost 2 TB.

Each server has two Intel (R) Xeon (R) CPUs

E5-2665@2.40GHz, which let you run up to 16 threads

per processor. In total, it gives power of 324 processes

in parallel. Data storage subsystem is built on IBM

Storwize V7000 with redundant dual-active intelligent

FC 8Gb controllers and dual-active iSCSI controllers.

Storage is using RAID10 volumes. Data is protected by

backup with deduplication mode. All system is pro-

tected by UPS. [12]

4.2 Virtualisation

Servers are managed by XENServer7 that allows to run

and manage a large number of virtual machines. Virtu-

alization provides a disaster recovery mechanism en-

suring that when a virtualized system crashes, it will be

restored as quickly as possible.

We use complete automation tool for managing Xen

server pools which utilize the XAPI8 management in-

terface and toolstack. Our software suite provides

complete High availability features within a given pool.

The overall design is intended to be lightweight with

no compromise of system stability. High availability is

provided with built in logic for detecting and recover-

ing failed services. We have two virtual machine serv-

ers, with automatic failover, provide safe environment

7 https://xenserver.org/
8 https://xapi.com/overview/

to run services. Service is defined as the application

and underlying operating system.

Features of CLARIN-PL scripts for XenServer:

 auto-start of any failed VMs,

 auto-start of any VMs on after reboot ,

 detection of failed hosts and automated recov-

ery of any affected VMs,

 detection and clean up orphaned resources af-

ter a failed host is removed - Removal of any

failed hosts from pool with takeover of ser-

vices.

4.3 Failover

Modified by CLARIN-PL version of D-Space9 reposi-

tory is stored on XenServer virtual machine. Single

point failure at the data storage subsystem does not af-

fect running D-Space repository service instance at

all. Single point failure of the primary application

server will initiate reconnecting to redundant second

controller to another application server and restarting

of the D-Space repository service. The policy described

above applies for the digital repository and the data

and metadata as well. The digital repository software

source code is publicly available and is stored in multi-

ple places on multiple machines.

4.4 Backup policy

Data backup is implemented on DS3500 Storwize

V700010, ProtecTIER 6710 IBM System with dedu-

plication mode. System is configure to create com-

plete data snapshot every Sunday.

The content of the digital repository is backed up to

the ProtecTIER every week (for the last month) includ-

ing daily incremental updates using standard backup

tools and can be restored using automatic tools. All

backups follow standardized ways of using MD5

checksums for determining the consistency and we

use automatic monitoring tools at various levels. All

backups follow standardized ways of using MD5

checksums for determining the consistency and we use

automatic monitoring tools at various levels. Any cor-

ruption of datasets creates error logs; and backups are

kept to restore data. Automated database backups

happen every day whilst online, with a retention period

currently set to 7 days. Additionally, our long-term ar-

chive partner provides multiple backups and redun-

dancy.

9 http://www.dspace.org/
10 https://en.wikipedia.org/wiki/IBM_Storwize_family

Walkowiak Tomasz, Marcin Pol

Dependalibity aspects of language technology infrastructure

 104

5. Maintainability

Virtualization makes the CLT management more con-

venient and efficient. The resources (memory, CPU,

disk) could be attached to any machine on demand and

changed according to needs. Operating systems are in-

dependent from the hardware in the virtual environ-

ment so they can be easily moved to another server as

a reaction to any failure or resource shortage.

The aim of the monitoring module is to control the CLT

state and allow a fast reaction on faults or system over-

loads. Monitoring is performed in full form on different

levels, starting from hardware, through virtual ma-

chines, language and machine learning tools up to user

web applications.

The CLT is high availability cluster with a distributed

setup. According to a best practice scenarios for large

and complex environments we do monitor servers with

Icinga 211. It is complete solution to monitor system

logs, application logs, log files, and syslog data, and

alerting you when a log pattern is detected.

It is built to be fast. Thanks to its multithreaded design

it is performance oriented. It can run thousands of

checks each second without any sign of CPU strain.

CLARIN-PL infrastructure has complete monitoring of

application servers – including JBOSS12, Websphere13,

Weblogic14, ActiveMQ15, and Tomcat16. We imple-

mented effective application server monitoring with the

following benefits:

 increased security,

 increased server, services, and application

availability,

 increased awareness of network infrastructure

problems,

 fast detection of network outages and protocol

failures,

 fast detection of failed processes, services, cron

jobs, and batch jobs,

 audit compliance and regulatory compliance

for example Data Seal of Approval17 or

CoreTrustSeal18.

The administrators receive an email in ten minutes after

the error or warning occurs. In addition summary of all

11 https://www.icinga.com/
12 https://en.wikipedia.org/wiki/WildFly/
13 https://www.ibm.com/cloud/websphere-application-plat-

form
14http://www.oracle.com/technetwork/middleware/weblo

gic/overview/

warnings and logs are send to administrators via an e-

mail every Sunday.

6. Authorisation and security aspects

6.1. Security

CLARIN-PL takes a proactive approach to security of

research data and user data. Regular penetration test-

ing is carried out to ensure service is secure against

attack. All previous penetration tests have failed to

breach the service. Recommendations issuing from

tests have been implemented.

6.2. Authorisation and federated Login

To get access to the CLARIN-PL repository or appli-

cations, users must set up a free account with the D-

Space (they can login via federation identity using shib-

boleth19).

LTC authorization is accomplished through the private

federated login. It is done by generating a random

string of 129 characters token, using a cryptographic

generator. Then the token is assigned to the authoriza-

tion process and it is stored in the user's D-Space data-

base. To allow Clarin applications to use the token, it is

placed in the http cookie named "clarin-en-token". It is

available throughout the wildcard clarin-pl domain.

When user is running a federated application such as

Nextcloud, the presence of the previously mentioned

cookie is checked. If the cookie is in the browser, veri-

fication is performed by calling D-Space microservice.

It is checking if the token is associated with the logged

in user. D-Space returns to the application the user

name and then logs into the application that requests

the login. In the case of an error in the verification or

absence of the cookie, the D-space will be redirected

user. The scheme is shown in Figure 5.

The centralized identity solution was created to help

deal with user and data security. The users and the ap-

plications access to the data within login and password.

Once logged to the system, users are logged to all ap-

plications.

15 http://activemq.apache.org/
16 http://tomcat.apache.org/
17 https://www.datasealofapproval.org/
18 https://www.coretrustseal.org/
19 https://shibboleth.net/

Journal of Polish Safety and Reliability Association

Summer Safety and Reliability Seminars, Volume 9, Number 3, 2018

 105

Figure 5. Authorisation schema

7. Response time and scalability

7.1 Response time statistics

Users can perform tasks of different complexity. As it

could be seen on Figures 6 and 7 most of tasks have a

short processing time (less then 2s), however still there

are tasks with much longer processing time. The largest

processing time was more than 25 hours. The pro-

cessing time is a function of corpora sizes (number of

files and file sizes) and the task complexity. The size of

the largest processed file was more than 2 GB. The

largest corpora consisted of ca. 260 000 files. The most

common are one file corpora, the median is equal to 53.

20https://en.wikipedia.org/wiki/Representa-

tional_state_transfer

Figure 6. Processing time histograms for times smaller

than 10s

Figure 7. Processing time histograms for times smaller

larger than 5s and smaller than 1000 s.

7.2. Synchronous and asynchronous

The most common approach of communication with

web application by REST API (REST) 20 is synchro-

nous. It works in standard blocking input/output way.

Each incoming request is assigned to separate thread

from the server’s thread pool. The request thread is

blocked until the response is not returned to the client

[4]. In case of requests of small response time it is a

very useful solution. However, when response time

rises it can cause problems and errors. First of all, num-

ber of threads on a server side is limited so increasing

the response time could result in approaching this limit.

Secondly, the response longer then a client HTTP

Walkowiak Tomasz, Marcin Pol

Dependalibity aspects of language technology infrastructure

 106

timeout results the timeout limit on the client side (usu-

ally equal to 189 s) and breaking the connection and

therefore failing of receiving results [9].

Second solution, asynchronous one works in different

way. Flow of the program does not block input/output

(non-blocking IO). Request processing is delegated

from the request thread to another thread not bonded

with the thread pool in order to handle another requests

in the meantime. It solves multi-threading problem

with long-running calls, which might easily exhaust the

number of available thread in the thread pool [4].

To fulfil different requirements the CLT web services

has two interfaces: synchronous and asynchronous one

[10].

REST

Broker

NLPService

network
file

system

Microservice 1
(Any2txt)

Microservice 2
(fextor2)

Microservice 3
(Morphodita)

LPMN engine

DSpace
Next
Cloud

Microservice 4
(Classify)

Figure 8. NLP services architecture

7.3 Micro-service architecture for scalability

The processing of texts by a chain of NLP and ML tools

is done in micro-service [13] like architecture (Fig 8).

Communication between micro-services is done by a

queening system. We have used the AMQP [8] proto-

col for lightweight communication mechanisms and

open source RabbitMQ [7] broker for a queuing sys-

tem. Each NLP micro-service collects tasks from a

given queue and sends back messages when results are

available. Almost each (more frequently used) NLP mi-

cro-service is deployed on a separate virtual machine.

Therefore, it is easy to scale up the system just by du-

plicating a virtual machine as a reaction to a high num-

ber of requests for a given micro-service. The work-

flows of NLP and ML tools are described in the Lan-

guage Processing Modelling Notation (LPMN) and

processed by a LPMN engine [11]. It allows to process

texts in on corpora in parallel.

7.4. Service response time

The main aim of CLARIN-PL infrastructure is to fulfil

user needs. It is not only the users functional require-

ments, but also to measure them in the sense of their

usability. It has been proven [4] that if user will not re-

ceive answer for the service in less than 10 seconds

he/she will probably resign from active interaction with

the service and will be distracted by other ones. That is

why it is so important to provide maximum service re-

sponse time between below 6 seconds for small tasks.

As it was shown in 7.1, the LTC processes tasks of dif-

ferent sizes and computational complexity. Therefore,

there is a need to prevent huge tasks from blocking

small one. The LPMN engine has a built in scheduling

algorithm that prevents large files and large corpora

(corpora with large number of files) from blocking the

NLP micro-service queue. The engine checks the queue

size and if it exceeds a defined threshold (different for

large files and for large corpora) the processing (send-

ing tasks to the queue) is delayed for a given amount of

time. Since checking the queue size is costs several ms

of processing time (amount import for large corpora

with very short texts), the engine checks the queue size

not often then each 10 ms and has a simple prediction

of the queue size algorithm.

As a result, a simple task (for example: processing of

one, small text file) are processed by LTC in time less

6 s even if the LTC is busy with processing huge cor-

pora. The experiments, shown the delay caused by the

scheduling algorithm is less than 1% of overall pro-

cessing time.

8. Conclusion

The paper presents a dependability analysis of

CLARIN-PL Language Technology Centre (CLT) as

the Polish node of the CLARIN research infrastructure.

A dependable coordination of micro-services allows to

fulfil users functional requirements. The CLT infra-

structure integrates several dependability and security

mechanisms in order to enforce reliability, integrity,

confidentiality, and availability in a modular way.

The paper presented infrastructure that promotes open,

centralized workflows by enabling capturing of differ-

ent aspects and products of the research lifecycle, in-

cluding developing a research idea, designing a study,

storing and analysing of collected data.

It showed that CLT is extensively used by researchers

and therefore dependability aspects of the infrastruc-

ture is very important. The amount of processed each

day texts is equal to 190 pieces of Nobel Prize Henryk

Sienkiewicz “Quo Vadis” novel.

Journal of Polish Safety and Reliability Association

Summer Safety and Reliability Seminars, Volume 9, Number 3, 2018

 107

References

[1] Avizienis, A., Laprie, J. & Randell, B. (2000). Fun-

damental concepts of dependability. Proc. 3rd IEEE

Information Survivability Workshop, Boston, Mas-

sachusetts, 7–12

[2] Caban, D. & Walkowiak, T. (2012). Preserving

continuity of services exposed to security incidents.

Proc. The Sixth International Conference on

Emerging Security Information, Systems and Tech-

nologies, SECURWARE 2012, IARIA, 72–78.

[3] Dragoni, N., Giallorenzo, S., Lluch-Lafuente, A.,

Mazzara, M., Montesi F., Mustafin, R. & Safina, L.

(2016). Microservices: yesterday, today, and tomor-

row, CoRR, vol abs/1606.04036

[4] Nielsen, J. (1994). Usability Engineering. Morgan

Kaufmann, San Francisco.

[5] Pałczyński, M. & Walkowiak, T. (2015).

Synchronous vs asynchronous processing in high

throughput web applications. The 15th

International Conference Reliability and Statistics

in Transportation and Communication, RelStat' 15.

195–202.

[6] Richardson, C. (2017). Micro-service architecture

pattern. microservices.io. Mar. 15, 2017.

[7] Videla, A. & Williams, J. (2012). RabbitMQ in

action. Distributed messaging for everyone.

Manning.

[8] Vinoski, S. (2006). Advanced message queuing

protocol. IEEE Internet Computing, 10(6), 87–89.

[9] Walkowiak, T. (2014), Behavior of Web servers in

stress tests. Advances in Intelligent Systems and

Computing 286, 467–476.

[10] Walkowiak, T. (2016). Asynchronous System for

Clustering and Classifications of Texts in Polish.

Advances in Intelligent Systems and Computing

470, 529–538.

[11] Walkowiak, T. (2018). Language processing

modelling notation - orchestration of NLP

microservices. Advances in Intelligent Systems and

Computing 582, 464–473.

[12] Walkowiak, T. & Pol, M. (2017). The impact of

administrator working hours on the reliability of the

Centre of Language Technology. Journal of Polish

Safety and Reliability Association 8(1). 167–173.

[13] Wolff, E. (2016). Microservices: Flexible Software

Architectures. Addison-Wesley

http://microservices.io/patterns/microservices.html
http://microservices.io/patterns/microservices.html

Walkowiak Tomasz, Marcin Pol

Dependalibity aspects of language technology infrastructure

 108

