PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Numerical prediction of component-ratio-dependent compressive strength of bone cement

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Changes in the compression strength of the PMMA bone cement with a variable powder/liquid component mix ratio were investigated. The strength test data served to develop basic mathematical models and an artificial neural network was employed for strength predictions. The empirical and numerical results were compared to determine modelling errors and assess the effectiveness of the proposed methods and models. The advantages and disadvantages of mathematical modelling are discussed.
Rocznik
Strony
87--101
Opis fizyczny
Bibliogr. 30 poz., fig.
Twórcy
  • Lublin University of Technology Faculty of Mechanical Engineering, Department of Machine Design and Mechatronics, Nadbystrzycka 36, 20-618 Lublin, Poland
  • Lublin University of Technology Faculty of Mechanical Engineering, Department of Machine Design and Mechatronics, Nadbystrzycka 36, 20-618 Lublin, Poland
autor
  • Lublin University of Technology Faculty of Mechanical Engineering, Department of Machine Design and Mechatronics, Nadbystrzycka 36, 20-618 Lublin, Poland
  • Lublin University of Technology, Faculty of Mechanical Engineering Department of Computerization and Production Robotization, Section of Biomedical Engineering, Nadbystrzycka 36, 20-618 Lublin, Poland
  • Medical University of Lublin Department of Trauma Surgery and Emergency Medicine, Staszica 16, 20-081 Lublin, Poland
Bibliografia
  • [1] Balin, Alicja. 2004. Materiałowo uwarunkowane procesy adaptacyjne i trwałość cementów stosowanych w chirurgii kostnej. Wydawnictwo Politechniki Śląskiej.
  • [2] Balin, Alicja. 2016. Cementy w chirurgii kostnej. Gliwice: Wydawnictwo Politechniki Śląskiej.
  • [3] Bialoblocka-Juszczyk, E., M. Baleani, L. Cristofolini, and M. Viceconti. n.d. ‘Fracture Properties of an Acrylic Bone Cement’. 6.
  • [4] Charnley, John. 1960. ‘Anchorage of the Femoral Head Prosthesis to the Shaft of the Femur’. The Journal of Bone and Joint Surgery. British Volume 42(1):28–30.
  • [5] Chen, Xue, Lanyong Zhang, Tong Liu, and M. M. Kamruzzaman. 2019. ‘Research on Deep Learning in the Field of Mechanical Equipment Fault Diagnosis Image Quality’. Journal of Visual Communication and Image Representation 62:402–9. doi: 10.1016/j.jvcir.2019.06.007.
  • [6] Dunne, N. J., and J. F. Orr. 2001. ‘Influence of Mixing Techniques on the Physical Properties of Acrylic Bone Cement’. Biomaterials 22(13):1819–26. doi: 10.1016/S0142-9612(00)00363-X.
  • [7] Dunne, N. J., J. F. Orr, M. T. Mushipe, and R. J. Eveleigh. 2003. ‘The Relationship between Porosity and Fatigue Characteristics of Bone Cements’. Biomaterials 24(2):239–45. doi: 10.1016/S0142-9612(02)00296-X.
  • [8] Falkowicz, Katarzyna, and Hubert Debski. 2019. ‘The Work of a Compressed, Composite Plate in Asymmetrical Arrangement of Layers’. P. 020005 in. Depok, Indonesia.
  • [9] Falkowicz, Katarzyna, and Hubert Debski. 2020. ‘The Post-Critical Behaviour of Compressed Plate with Non-Standard Play Orientation’. Composite Structures 252:112701. doi: 10.1016/j.compstruct.2020.112701.
  • [10] Falkowicz, Katarzyna, Hubert Debski, and Pawel Wysmulski. 2020. ‘Effect of Extension-Twisting and Extension-Bending Coupling on a Compressed Plate with a Cut-Out’. Composite Structures 238:111941. doi: 10.1016/j.compstruct.2020.111941.
  • [11] de Haan, Kevin, Yair Rivenson, Yichen Wu, and Aydogan Ozcan. 2020. ‘Deep-Learning-Based Image Reconstruction and Enhancement in Optical Microscopy’. Proceedings of the IEEE 108(1):30–50. doi: 10.1109/JPROC.2019.2949575.
  • [12] Hatt, Mathieu, Chintan Parmar, Jinyi Qi, and Issam El Naqa. 2019. ‘Machine (Deep) Learning Methods for Image Processing and Radiomics’. IEEE Transactions on Radiation and Plasma Medical Sciences 3(2):104–8. doi: 10.1109/TRPMS.2019.2899538.
  • [13] Hosseini, Mohammad-Parsa, Amin Hosseini, and Kiarash Ahi. 2020. ‘A Review on Machine Learning for EEG Signal Processing in Bioengineering’. IEEE Reviews in Biomedical Engineering 1–1. doi: 10.1109/RBME.2020.2969915.
  • [14] Jiménez, Gabriel, and Daniel Racoceanu. 2019. ‘Deep Learning for Semantic Segmentation vs. Classification in Computational Pathology: Application to Mitosis Analysis in Breast Cancer Grading’. Frontiers in Bioengineering and Biotechnology 7. doi: 10.3389/fbioe.2019.00145.
  • [15] Karpinski, Robert, Jakub Szabelski, and Jacek Maksymiuk. 2018. ‘Analysis of the Properties of Bone Cement with Respect to Its Manufacturing and Typical Service Lifetime Conditions’ edited by D. Stančeková, M. Vaško, A. Rudawska, N. Čuboňová, A. Sapietová, J. Mrázik, J. Szabelski, and V. Tlach. MATEC Web of Conferences 244:01004. doi: 10.1051/matecconf/201824401004.
  • [16] Karpiński, Robert, Jakub Szabelski, and Jacek Maksymiuk. 2019. ‘Effect of Physiological Fluids Contamination on Selected Mechanical Properties of Acrylate Bone Cement’. Materials 12(23):3963. doi: 10.3390/ma12233963.
  • [17] Karpiński, Szabelski, and Maksymiuk. 2019. ‘Seasoning Polymethyl Methacrylate (PMMA) Bone Cements with Incorrect Mix Ratio’. Materials 12(19):3073. doi: 10.3390/ma12193073.
  • [18] Lee, Sang Min, Joon Beom Seo, Jihye Yun, Young-Hoon Cho, Jens Vogel-Claussen, Mark L. Schiebler, Warren B. Gefter, Edwin J. R. van Beek, Jin Mo Goo, Kyung Soo Lee, Hiroto Hatabu, James Gee, and Namkug Kim. 2019. ‘Deep Learning Applications in Chest Radiography and Computed Tomography: Current State of the Art’. Journal of Thoracic Imaging 34(2):75–85. doi: 10.1097/RTI.0000000000000387.
  • [19] Lelovics, H., and T. Liptáková. 2019. ‘Comparison of Some Mechanical and Rheological Properties of Bone Cements’. Pp. 157–58 in.
  • [20] Lelovics, Henrietta, and Tatiana Liptakova. 2010. ‘Time and Mixing Techniquedependent Changes in Bone Cement SmartSet (R) HV’. Acta of Bioengineering and Biomechanics 12(4):63–67.
  • [21] Liptáková, Tatiana, Henrietta Lelovics, and Libor Necas. 2009. ‘Variations of Temperature of Acrylic Bone Cements Prepared by Hand and Vacuum Mixing during Their Polymerization’. Acta of Bioengineering and Biomechanics 11(3):47–51.
  • [22] Matuszewski, Łukasz, Grażyna Olchowik, Tomasz Mazurkiewicz, Bartłomiej Kowalczyk, Agata Zdrojewska, Anna Matuszewska, Andrzej Ciszewski, Małgorzata Gospodarek, and Iwona Morawik. 2014. ‘Biomechanical Parameters of the BP-Enriched Bone Cement’. European Journal of Orthopaedic Surgery & Traumatology 24(4):435–41. doi: 10.1007/s00590-013-1230-1.
  • [23] Pałubicka, Anna, Jakub Czubek, and Marcin Wekwejt. 2019. ‘Effect of Aeration of Antibiotic-Loaded Bone Cement on Its Properties and Bactericidal Effectiveness’. Minerva Ortopedica e Traumatologica 70(2). doi: 10.23736/S0394-3410.19.03913-4.
  • [24] Tan, J. H., B. Th Koh, A. K. Ramruttun, and W. Wang. 2016. ‘Compression and Flexural Strength of Bone Cement Mixed with Blood’. Journal of Orthopaedic Surgery (Hong Kong) 24(2):240–44. doi: 10.1177/1602400223.
  • [25] Tu, Yan-Hui, Jun Du, and Chin-Hui Lee. 2019. ‘Speech Enhancement Based on Teacher–Student Deep Learning Using Improved Speech Presence Probability for Noise-Robust Speech Recognition’. IEEE/ACM Transactions on Audio, Speech, and Language Processing 27(12):2080–91. doi: 10.1109/TASLP.2019.2940662.
  • [26] Wekwejt, M., M. Michalska-Sionkowska, M. Bartmański, M. Nadolska, K. Łukowicz, A. Pałubicka, A. M. Osyczka, and A. Zieliński. 2020. ‘Influence of Several Biodegradable Components Added to Pure and Nanosilver-Doped PMMA Bone Cements on Its Biological and Mechanical Properties’. Materials Science and Engineering: C 117:111286. doi: 10.1016/j.msec.2020.111286.
  • [27] Wekwejt, M., N. Moritz, B. Świeczko-Żurek, and A. Pałubicka. 2018. ‘Biomechanical Testing of Bioactive Bone Cements – a Comparison of the Impact of Modifiers: Antibiotics and Nanometals’. Polymer Testing 70:234–43. doi: 10.1016/j.polymertesting.2018.07.014.
  • [28] Wekwejt, Marcin, Anna Michno, Karolina Truchan, Anna Pałubicka, Beata Świeczko-Żurek, Anna Maria Osyczka, and Andrzej Zieliński. 2019. ‘Antibacterial Activity and Cytocompatibility of Bone Cement Enriched with Antibiotic, Nanosilver, and Nanocopper for Bone Regeneration’. Nanomaterials 9(8):1114. doi: 10.3390/nano9081114.
  • [29] Younesi, M., M. E. Bahrololoom, and M. Ahmadzadeh. 2010. ‘Prediction of Wear Behaviors of Nickel Free Stainless Steel–Hydroxyapatite Bio-Composites Using Artificial Neural Network’. Computational Materials Science 47(3):645–54. doi: 10.1016/j.commatsci.2009.09.019.
  • [30] Zhang, Wei, Xiaodong Cui, Ulrich Finkler, Brian Kingsbury, George Saon, David Kung, and Michael Picheny. 2019. ‘Distributed Deep Learning Strategies for Automatic Speech Recognition’. Pp. 5706–10 in ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). Brighton, United Kingdom: IEEE
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5bd9883e-a56e-4af3-835b-5e07c2304eeb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.