PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The Quantum Computer - What Does It Means?

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In a classical measurement the Shannon information is a natural measure of our ignorance about properties of a system. There, observation removes that ignorance in revealing properties of the system which can be considered to preexist prior to and independent of observation. Because of the completely different root of a quantum measurement as compared to a classical measurement, conceptual difficulties arise when we try to define the information gain in a quantum measurement using the notion of Shannon information. In contrast to classical measurements, quantum measurements, with very few exceptions, cannot be claimed to reveal a property of the individual quantum system existing before the measurement is performed. A mathematical theory of computation that is based on quantum physics is bound to be different. They are the analogues for quantum computers to classical logic gates for conventional digital computers. Although quantum gates work on qubits in a much different fashion from standard electronic circuits, they only differ in their basic effects in one sense: reversibility.
Słowa kluczowe
Rocznik
Tom
Strony
77--96
Opis fizyczny
Bibliogr. 12 poz., rys., tab.
Twórcy
autor
  • Academy of Podlasie, Institute of Computer Science
Bibliografia
  • 1. Ashkin A.; Optical trapping and manipulation of neutral particles using lasers; Research Department, Bell Laboratories, Lucent Technologies, Holmdel, 1997.
  • 2. Benioff P.; The Computer as a Physical System: A Microscopic Quantum Mechanical Hamiltonian Model of Computers as Represented by Turing Machines; Journal of Statistical Physics, Vol. 22, 1980.
  • 3. Bennett C.; Logical Reversibility of Computation; IBM Journal of Research and Development, Vol. 17, 1973, pp. 525-532.
  • 4. Bennett C.; Logical Reversibility of Computation; IBM Journal of Research and Development, Vol. 17, 1973, pp. 525-532.
  • 5. Deutsch D.; Quantum Theory, the Church-Turing Principle, and the Universal Quantum Computer; Proceedings of the Royal Society of London, Vol. A400, 1985.
  • 6. Evident Technologies; Quantum dots; Troy, New York, 2007; http://www.evidenttech.com/qdot-definition/quantum-dot-introduction.php
  • 7. Feynman R. P.; Simulating Physics with Computers; International Journal of Theoretical Physics, Vol. 21, Nos. 6/7, 1982.
  • 8. Kaye Ph., Laflamme R., Mosca M.; An Introduction to Quantum Computing; Oxford University Press Inc., New York, 2007.
  • 9. Meglicki Z.; Introduction to Quantum Computing; Computer Based Learning Unit, University of Leeds, April 1995.
  • 10. Monroe's C. - FOCUS Center; Efficient photoionization loading of trapped ions with ultrafast pulses;, Optical Physics Interdisciplinary Laboratory and Department of Physics, University of Michigan, 2006.
  • 11. Schumacher B.; Quantum coding; Department of Physics, Kenyon College, Gambier, Ohio Phys. Rev. Issue 4 - April 1995.
  • 12. Shukla K.S., Edit.; Nano, Quantum and Molecular Computing Implications to High Level Design and Validation; Virginia Polytechnic and State University, Blacksburg, U.S.A., 2004.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5bd7a57e-1bb5-43d9-813c-5ba9eb0ee5b8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.