PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Implementation of planned power generation for a grid-tied photovoltaic system with a storage battery for self-consumption of local object

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
PL
Realizacja planowanej generacji mocy dla systemu fotowoltaicznego podłączonego do sieci z baterią akumulacyjną do własnego poboru lokalnego obiektu
Języki publikacji
EN
Abstrakty
EN
The implementation of the planned power generation into the grid for a photovoltaic system with a battery is considered using the example of the accepted load schedule of a local object. Generation is carried out during peak hours at a constant power in time, taking into account the limit. The parameters are selected according to the average monthly generation of a photovoltaic battery for its location. Control with reference of active power uses a short-term forecast.
Rozważono realizację planowanej generacji mocy do sieci dla systemu fotowoltaicznego z baterią na przykładzie przyjętego harmonogramu obciążenia obiektu lokalnego. Wytwarzanie odbywa się w godzinach szczytu ze stałą mocą w czasie, z uwzględnieniem limitu. Parametry dobierane są zgodnie ze średnią miesięczną generacją baterii fotowoltaicznej dla jej lokalizacji. Sterowanie w odniesieniu do mocy czynnej wykorzystuje prognozę krótkoterminową.
Rocznik
Strony
18--27
Opis fizyczny
Bibliogr. 30 poz., rys., tab.
Twórcy
  • Kyiv National University of Technologies and Design, Department of Computer Engineering and Electromechanics, Nemirovicha Danchenka str. 2, 01011 Kyiv, Ukraine
  • Kyiv National University of Technologies and Design, Department of Computer Engineering and Electromechanics, Nemirovicha Danchenka str. 2, 01011 Kyiv, Ukraine
  • Technical University of Kosice, Faculty of Electrical Engineering and Informatics, Letná 9, 04200 Košice, Slovakia
  • Technical University of Kosice, Faculty of Electrical Engineering and Informatics, Letná 9, 04200 Košice, Slovakia
  • Kyiv National University of Technologies and Design, Department of Computer Engineering and Electromechanics, Nemirovicha Danchenka str. 2, 01011 Kyiv, Ukraine
Bibliografia
  • [1] Hilorme T., Sokolova L., Portna O., Lysiak L., Boretskaya N., The model of evaluation of the renewable energy resources development under conditions of efficient energy consumption IBIMA 2019: Education Excellence and Innovation Management through Vision 2020, 2019, 7514 – 7526 doi: 10.5171/2019.923814
  • [2] Rao B.H., Selvan M.P., Prosumer Participation in a Transactive Energy Marketplace: A Game-Theoretic Approach,IEEE International Power and Renewable Energy Conference, Karunagappally, (2020), India, 1-6 doi: 10.1109/IPRECON 49514.2020.9315274
  • [3] Jihane Kartite, Mohamed Cherkaoui, Study of the different structures of hybrid systems in renewable energies: Areview, Energy Procedia, 2019, Vol. 157, 323–330 doi: 10.1016/j.egypro.2018.11.197
  • [4] Ando R., Ishii H., Hayashi Y., Zhu G. A Planned Power Generation for Battery-Assisted Photovoltaic System Using Short-Term Forecast, IEEE Access, 2021, Vol. 9, 125238-125246 doi: 10.1109/ACCESS.2021.3110950
  • [5] Deotti L, Guedes W, Dias B, Soares T., Technical and Economic Analysis of Battery Storage for Residential Solar Photovoltaic Systems in the Brazilian Regulatory Context, Energies. 2020; 13(24):6517 doi: 10.3390/en13246517
  • [6] Rahmat Khezri, Amin Mahmoudi, Hirohisa Aki, Optimal planning of solar photovoltaic and battery storage systems for grid-connected residential sector: Review, challenges and new perspectives, Renewable and Sustainable Energy Reviews, January 2022, vol. 153 doi:10.1016/j.rser.2021.111763
  • [7] Rasmus Luthander, Joakim Widén, Daniel Nilsson, Jenny Palm, Photovoltaic self-consumption in buildings: A review, Applied Energy, 2015, Vol. 142, 80-94 doi:10.1016/j.apenergy.2014.12.028
  • [8] Moshövel J., Kairies K.P., Magnor D., Leuthold M., Bost M., Gährs S., Szczechowicz E., Cramer M., Sauer D.U. Analysis of the maximal possible grid relief from PV-peak-power impacts by using storage systems for increased self-consumption, Appl. Energy, 2015, 137, 567–575 doi:10.1016/j.apenergy.2014.07.021
  • [9] Schram W.L., Lampropoulos I., van Sark W.G., Photovoltaic systems coupled with batteries that are optimally sized for household self-consumption: Assessment of peak shaving potential, Appl. Energy, 2018, 223, 69–81 doi:10.1016/j.apenergy.2018.04.023
  • [10] Lorenzi G., Silva C.A.S., Comparing demand response and battery storage to optimize self-consumption in PVsystems, Appl. Energy, 2016, 180, 524–535 doi:10.1016/j.apenergy.2016.07.103
  • [11] Linssen J., Stenzel P., Fleer J., Techno-economic analysis of photovoltaic battery systems and the influence of different consumer load profiles, Appl. Energy, 2017, 185, 2019–2025 doi:10.1016/j.apenergy.2015.11.088
  • [12]Chawin Prapanukool, Surachai Chaitusaney., An appropriate battery capacity and operation schedule of battery energy storage system for PV Rooftop with net-metering scheme, 2017 14th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON), 27-30 June 2017, Date Added to IEEE Xplore: 07 November 2017, 17337554, doi: 10.1109/ECTICon.2017.8096213
  • [13]Slama F., Radjeai H., Mouassa S., Chouder A., New algorithm for energy dispatch scheduling of grid-connected solar photovoltaic system with battery storage system, Electrical Engineering & Electromechanics, 2021, No. 1, 27-34 doi: 10.20998/2074-272X.2021.1.05
  • [14]Davis M.; Hiralal P., Batteries as a service: a new look at electricity peak demand management for houses in the UK, Procedia Eng. 2016, 145, 1448–1455 doi:10.1016/j.proeng.2016.04.182
  • [15] Shavolkin O., Shvedchykova I., Demishonkova S., Pavlenko V., Increasing the efficiency of hybrid photoelectric system equipped with a storage battery to meet the needs of local object with generation of electricity into grid, Przeglad Elektrotechniczny, 2021, 97(11), 144-149 doi:10.15199/48.2021.11.26
  • [16] Shavolkin O., Shvedchykova I., Jasim Jasim J. M., Energy management of a photoelectric system with a storage battery for the needs of a local object with the planned generation of electricity into the grid, 2021 IEEE 62nd International Scientific Conference on Power and Electrical Engineering of Riga Technical University (RTUCON), 2021, 1-6, doi: 10.1109/RTUCON53541.2021.9711584
  • [17] Zheng Zeng, Huan Yang, Rongxiang Zhao, Chong Cheng, Topologies and control strategies of multi-functional grid-connected inverters for power quality enhancement: A comprehensive review, Renewable and Sustainable Energy Reviews, 2013, No. 24, 223–270doi: 10.1016/j.rser.2013.03.033
  • [18] Vigneysh T., Kumarappan N., Grid interconnection of renewable energy sources using multifunctional grid-interactiveconverters: A fuzzy logic-based approach, Electric Power Systems Research, 2017, 151, 359–368 doi:10.1016/j.epsr.2017.06.010
  • [19] Ruben Lliuyacc, Juan M. Mauricio, Antonio Gomez-Exposito, Mehdi Savaghebi, Josep M. Guerrero, Grid-forming VSC control in four-wire systems with unbalanced Nonlinear loads, Electric Power Systems Research, 2017, 152, 249–256 doi:10.1016/j.epsr.2017.07.010
  • [20] Shavolkin, O., Shvedchykova, I., Improvement of the Three-Phase Multifunctional Converter of the Photoelectric System with a Storage Battery for a Local Object with Connection to a Grid, 2020 IEEE Problems of Automated Electrodrive. Theory and Practice (PAEP), 2020, 1-6 doi: 10.1109/PAEP49887.2020.9240789
  • [21] Shavolkin O., Shvedchykova I. Improvement of the multifunctional converter of the photoelectric system with a storage battery for a local object with connection to a grid, 2020 IEEE KhPI Week on Advanced Technology (KhPIWeek), 2020, 287-292 doi: 10.1109/KhPIWeek51551.2020.9250096
  • [22] Henrik Zsiborács, Gábor Pintér, András Vincze, Zoltán Birkner, Nóra Hegedűsné Baranyai, Grid balancing challenges illustrated by two European examples: Interactions of electric grids, photovoltaic power generation, energy storage and power generation forecasting, Energy Reports, 2021, No. 7, 3805–3818doi:10.1016/j.egyr.2021.06.007
  • [23] Shavolkin O., Shvedchykova I., Jasim J. M. J., Improved control of energy consumption by a photovoltaic system equipped with a storage device to meet the needs of a local facility, Eastern-European Journal of Enterprise Technologies, 2021, 2 (8 (110)), 6–15 doi:10.15587/1729-4061.2021.228941
  • [24] Forecast. Solar. [Online]. Available: https://forecast.solar/.
  • [25] Iyengar S., Sharma N., Irwin D., Shenoy P., Ramamritham K., SolarCast – an open web service for predicting solar power generation in smart homes, Proceedings of the 1st ACM Conference on Embedded Systems for Energy-Efficient Buildings. November 2014, 174–175 doi:10.1145/2674061.2675020
  • [26] Traore A., Taylor A., Zohdy M., Peng F., Modeling and Simulation of a Hybrid Energy Storage System for Residential Grid-Tied Solar Microgrid Systems, Journal of Power and Energy Engineering, 2017, No. 5, 28-39, doi:10.4236/jpee.2017.55003
  • [27] Víctor Manuel Miñambres-Marcos, Miguel Ángel Guerrero-Martínez, Fermín Barrero-González and María Isabel Milanés-Montero, A Grid Connected Photovoltaic Inverter with Battery-Supercapacitor Hybrid Energy Storage, Sensors, 2017, 17, 1856 doi:10.3390/s17081856
  • [28] Shavelkin A.A., Gerlici J., Shvedchykova I.O. Kravchenko K., Kruhliak H.V., Management of power consumption in a photovoltaic system with a storage battery connected to the network with multi-zone electricity pricing tosupply the local facility own needs, Electrical Engineering & Electromechanics, 2021, No. 2, 36-42 doi: :10.20998/2074-272X.2021.2
  • [29] Photovoltaic geographical information system. Available at: https://re.jrc.ec.europa.eu/pvg_tools /en / tools.html#SA.
  • [30] Data sheet. LITHIUM IRON PHOSPHATE (LIFEPO4) BATTERY 12.8V 150Ah. Available at: www.enix-energies.com.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5bcff407-fa94-4142-a441-947a7da34b0a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.