Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In the paper the identification of the discrete-continuous model of the laboratory truck crane has been presented. In the theoretical model, the laboratory truck crane has been represented by three member type telescopic boom, hydraulic cylinder of crane radius change and the elastic support system. The free vibration problem of the analyzed system has been only considered in a rotary plane of the laboratory truck crane. For formulating and solving the free vibration problem of the analyzed system the Lagrange multiplier formalism has been employed. The identification of the discrete-continuous model has consisted in the determination of the spring constants substituting the elastic support system. Values of these spring constants have been determined on the basis of the solution of optimization problem and the experimental modal analysis. In optimization problem, the genetic algorithm has been used.
Czasopismo
Rocznik
Tom
Strony
2--15
Opis fizyczny
Bibliogr. 23 poz., wykr.
Twórcy
autor
- Institute of Mechanics and Machine Design Foundations Częstochowa University of Technology
Bibliografia
- 1. Rusiński E., 2002, Design principles for supporting structures of self-propelled vehicles, Oficyna Wydawnicza Politechniki Wrocławskiej, Wrocław (in Polish).
- 2. Eberhard P., Schiehlen W., 1998, Hierarchical modeling in multibody dynamics, Archive of Applied Mechanics, 68, 237-246.
- 3. Ljung L., 1987, System identification theory for the user, Prentice Hall, Englewood Cliffs, NJ.
- 4. Uhl T., 2005, Identification of modal parameters for nonstationary mechanical systems, Archive of Applied Mechanics, 74, 878-889.
- 5. Sakazawa Y., Nakazumi A., 1985, Modelling and control of a rotary crane with a hydraulic cylinder, Transactions of the Society of Instrument and Control Engineering, 21(3), 298-304.
- 6. Posiadała B., 1997, Influence of crane support system on motion of the lifted load, Mechanism and Machine Theory, 32(1), 9-20.
- 7. Kilicaslan S., Balkan T., Ider S.K., 1999, Tipping loads of mobile cranes with flexible booms, Journal of Sound and Vibrations, 223 (4), 645-657.
- 8. Sun G., Kleeberger M., 2003, Dynamic responses of hydraulic mobile crane with consideration of the drive system, Mechanism and Machine Theory, 38, 1489-1508.
- 9. Sun G., Liu J., 2006, Dynamic responses of hydraulic crane during luffing motion, Mechanism and Machine Theory, 41(11), 1273-1288.
- 10. Sochacki W., 2007, The dynamic stability of a laboratory model of a truck crane, Thin-Walled Structures, 45(10-11), 927-930.
- 11. Cekus D., Posiadała B., 2002, Free longitudinal vibrations of hydraulic cylinder, Vibration in Physical Systems, 124-125.
- 12. Posiadała B., Cekus D., 2008, Discrete model of vibration of truck crane telescopic boom with consideration of the hydraulic cylinder of crane radius change in the rotary plane, Automation in Construction, 17/3, 245-250.
- 13. Cekus D., Posiadała B., 2008, Free vibrations of the system three member type telescopic boom - hydraulic cylinder of crane radius change in the lifting plane of truck crane, Górnictwo Odkrywkowe, 4-5/2008, 157-162 (in Polish).
- 14. Cekus D., Posiadała B., 2011, Vibration model and analysis of three-member telescopic boom with hydraulic cylinder for its radius change, International Journal of Bifurcation and Chaos, 21(10), 2883-2892.
- 15. Yang X., Teo K.L., Caccetta L., 2007, Optimization methods and applications, Springer-Verlag.
- 16. Bagheri M., Jafari A.A., 2006, Analytical and experimental modal analysis of nonuniformly ring-stiffened cylindrical shells, Archive of Applied Mechanics, 75,177-191.
- 17. Karpel M., Ricci S., 1997, Experimental modal analysis of large structures by substructuring, Mechanical Systems and Signal Processing, 11(2), 245-256.
- 18. Rusiński E., Czmochowski J., Moczko P., Muchaczow J., 2005, Numerical-experimental modal analysis of wheel excavator's body vibrations, Czasopismo Techniczne, R. 102, z. 1-M: 357-366 (in Polish).
- 19. Holland J.H ., 1975, Adaptation in natural and artificial systems, University of Michigan Press, Ann Arbor.
- 20. Goldberg D.E., 1989, Genetic algorithms in search, optimization, and machine learning, Addison-Wesley, Reading, MA.
- 21. Mitchell M ., 1999, An introduction to genetic algorithms, MIT Press.
- 22. Posiadała B., 2007, Modelling and analysis of continuous-discrete mechanical systems. Application of the Lagrange multiplier formalism, Wydawnictwo Politechniki Częstochowskiej, Seria Monografie nr 136 (in Polish).
- 23. Tomski L., Chwalba W., 1989, System for testing the vibration of a truck-crane model, Proc. Conf. „Research Methods of Labour-Machines”, Papers of Construction Equipment Research Institute, 1-3, 206-214 (in Polish).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5bcfe55e-5051-4833-9865-877bc2116122