PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Short discussion of static properties of dense polymer melts in two dimensions : CMA Monte Carlo Simulation vs Molecular Dynamics

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper we present the results of an extensive Monte Carlo lattice simulation of two dimensional dense athermal polymer solutions using the Cooperative Motion Algorithm (CMA). Simulations were performed for a wide range of polymer chain length N which varies from 32 to 1024 and for high concentration of polymer. Our results were compared with those obtained by means of molecular dynamics [1].
Twórcy
  • Department of Molecular Physics Łódź University of Technology, 90-924 Łódź, Poland
autor
  • Department of Man-Made Fibres Łódź University of Technology, 90-924 Łódź, Poland
Bibliografia
  • [1] H. Meyer, J.P. Wittmer, T. Kreer, A. Johner, J. Baschnagel, Static Properties of Polymer Melts in Two Dimensions, J. Chem. Phys. 132, 184904 (2010).
  • [2] A. Yethiraj, Computer Simulation Study of Two-Dimensional Polymer Solutions, Macromolecules 36, 5854–5862 (2003).
  • [3] C. Vlahos, M. Kosmas, On the miscibility of chemically identical linear homopolymers of different size, Polymer 44, 503–507 (2003).
  • [4] B. Maier, J.O. Radler, Conformation and Self-Diffusion of Single DNA Molecules Confined to Two Dimensions, Phys. Rev. Lett. 82, 1911–1914 (1999).
  • [5] B. Maier, J.O. Radler, DNA on Fluid Membranes: A Model Polymer in Two Dimensions, Macromolecules 33, 7185–7194 (2000).
  • [6] B. Maier, J.O. Radler, Shape of Self-Avoiding Walks in Two Dimensions, Macromolecules 34, 5723–5724 (2001).
  • [7] Y.M. Wang, I. Teraoka, Structures and Thermodynamics of Nondilute Polymer Solutions Confined between Parallel Plates, Macromolecules 33, 3478–3484 (2000).
  • [8] I. Teraoka, Y.M. Wang, Crossover from Two- to Three-Dimensional Contraction of Polymer Chains in Semidilute Solutions Confined to a Narrow Slit, Macromolecules 33, 6901–6903 (2000).
  • [9] P. Polanowski, A. Sikorski, Universal scaling behavior of polymer chains at the percolation threshold, Soft Matter 14, 8249 (2018).
  • [10] P-G. De Gennes, Scaling Concepts in Polymer Physics, Cornell University Press, Ithaca, New York (1979).
  • [11] T. Pakula, Cooperative Relaxations in Condensed Macromolecular Systems. 1. A Model for Computer Simulation, Macromolecules 20, 679–682 (1987).
  • [12] T. Pakula, S. Geyler, Cooperative Relaxations in Condensed Macromolecular Systems. 2. Computer Simulation of SelfDiffusion of Linear Chains, Macromolecules 20, 2909–2914 (1987).
  • [13] P. Polanowski, J.K. Jeszka, Microphase Separation in Two-Dimensional Athermal Polymer Solutions on a Triangular Lattice, Langmuir 23, 8678–8680 (2007).
  • [14] I. Carmesin, K. Kremer, Static and Dynamic Properties of Two-Dimensional Polymer Melts, J. Phys. (France) 51, 915–932 (1990).
  • [15] M. Doi, S.F. Edwards, The Theory of Polymer Dynamics, Clarendon Press, Oxford (1986).
  • [16] P. Adamczyk, P. Polanowski, A. Sikorski, Percolation in Polymer-Solvent Systems: A Monte Carlo Study, J. Chem. Phys. 131, 234901 (2009).
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5bc55fe0-3fbb-4008-8680-6cdacb5249da
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.