PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Sole structures as a tool for depositional environment interpretation : a case study from the Oligocene Cergowa Sandstone, Dukla Unit (Outer Carpathians, Slovakia)

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Sole structures, typically developed on basal bedding surfaces of turbidite sandstones, are commonly used as palaeocurrent indicators and indicators of the current ability to erode. Detailed analysis of types and frequency of sole structures in the 128 m thick succession of Early Oligocene Cergowa Sandstone (Outer Western Carpathians) also shows their potential as an indicator of flow condition during the deposition. The massive and amalgamated sandstones, predominantly containing load casts and minor flutes and grooves with unidirectional orientation, are suggested to be deposited by highly turbulent flow after reaching hydraulic jump behind the topographic obstacle. High range of sole structures in thick and medium thick sandstones, suggesting inferior oblique and reverse flows, implies deposition from density stratified flows where lower, denser part has a tendency to deflect when hit the basin floor obstacle. The upper, less dense part has an ability to come over the obstacle and shows only small scatter in the palaeocurrent direction.
Rocznik
Strony
41--50
Opis fizyczny
Bibliogr. 61 poz., rys., wykr.
Twórcy
  • Institute of Geosciences, Technical University of Košice, Letná 9, 04-001 Slovakia
autor
  • Institute of Geosciences, Technical University of Košice, Letná 9, 04-001 Slovakia
Bibliografia
  • 1. Allen J.R.L. (1982) Sedimentary structures: their character and physical basis. Developments in Sedimentology, 30.
  • 2. Baas J.H. (2004) Conditions for formation of massive turbiditic sandstones by primary depositional processes. Sedimentary Geology, 166: 293-310.
  • 3. Baines P.G. (1979) Observations of stratified flow past threedimensional barriers. Journal of Geophysical Research, 84: 7834-7838.
  • 4. Boggs S. (2001) Principles of Sedimentology and Stratigraphy. Prentice Hall.
  • 5. Bouma A.H. (1962) Sedimentology of Some Flysch Deposits: a Graphic Approach to Facies Interpretation. Elsevier, Amsten dam.
  • 6. Collinson J.D., Mountney N.P., Thompson D.B. (2006) Sedimentary Structures. Terra Publishing, England.
  • 7. Dirnerová D., Prekopová M., Janočko J. (2012) Sedimentary record of the Dukla Basin (Outer Carpathians, Slovakia and Poland) and its implications for basin evolution. Geological Quarterly, 56 (3): 547-560.
  • 8. Dżułyński S. (1996) Erosional and deformational structures in single sedimentary beds: a genetic commentary. Annales Societatis Geologorum Poloniae, 66: 101-189.
  • 9. Dżułyński S., Sanders J.E. (1962) Current marks on firm mud bottoms. Transactions of the Connecticut Academy of Arts and Sciences, 42: 57-96.
  • 10. Dżułynski S., Simpson F. (1966) Experiments on interfacial current markings. Geologica Romana, 5: 197-214.
  • 11. Dżułyński S., Walton E.K. (1965) Sedimentary features of flysch and greywackes. Developments in Sedimentology, 7.
  • 12. Dzulynski S., Ksiązkiewicz M., Kuenen P.H. (1959) Turbidites in flysch of the Polish Carpathian Mountains. GSA Bul l et in, 70: 1089-1118.
  • 13. Etienne S., Mulder T., Razin P., Bez M., Désaubliaux G., Joussia- ume R., Tournadout E. (2013) Proximal to distal turbiditic sheet-sand heterogeneities: Characteristics of associated internal channels. Examples from the Trois Evéchés area, Eocene- Oligocene Annot Sandsones (Gres d'Annot), SE France. Marine and Petroleum Geology, 41: 117-133.
  • 14. Felix M., Peakall J. (2006) Transformation of debris flows into turbidity currents: mechanisms inferred from laboratory experiments. Sedimentology, 53: 107-123.
  • 15. Felix M., Leszczyński S., Ślączka A., Uchman A., Amy L., Peakall J. (2009) Field expressions of the transformation of debris flows into turbidity currents, with examples from the Polish Carpatthians and the French Maritime Alps. Marine and Petroleum Geology, 26: 2011-2020.
  • 16. Gladstone C., Ritchie L.J., Sparks S.J., Woods W. (2004) An experimental investigation of density-stratified inertial gravity currents. Sedimentology, 51: 767-789.
  • 17. Golonka J., Oszczypko N., Malata T., Poprawa P., Krobicki M., Słomka T. (2003) Geodynamic evolution stages in the Outer Carpathians. Geolines, 16: 31-32.
  • 18. Golonka J., Pietsch K., Marzec P. (2011) Structure and Plate Tectonic Evolution of the Northern Outer Carpathians. In: Tectonics (ed. E. Closson): 65-92. Intech. Available from: http://www.inte- chopen.com/articles/show/title/structure-and-plate-tectonic- evolution-of-the-northern-outer-carpathians.
  • 19. Hall J. (1943) Remarks upon casts of mud furrows, wave lines, and other markings of the New York system. Reports of the First, Second and Third Meetings of the Association of American Geologists and Naturalists, Boston: 422-432.
  • 20. Haughton P., Davis CH., McCaffrey W., Barker S. (2009) Hybrid sediment gravity flow deposits - classification, origin and significance. Marine and Petroleum Geology, 26: 1900-1918.
  • 21. Hodgson D.M. (2009) Distribution and origin of hybrid beds in sand-rich submarine fans of the Tanqua depocentre, Karoo Basin, South Africa. Marine and Petroleum Geology, 26: 1940-1956.
  • 22. Hunt J.C.R., Snyder W.H. (1980) Experiments on stably and neutrally stratified flow over a model three-dimensional hill. Journal of Fluid Mechanics, 96: 671-704.
  • 23. Kane I.A., Hodgson D.M. (2011) Sedimentological criteria to differentiate submarine channel levee subenvironments: exhumed examples from the Rosario Fm. (Upper Cretaceous) of Baja Califorma, Mexico, and the Fort Brown Fm. (Permian), Karoo Basin, S. Africa. Marine and Petroleum Geology, 28: 807-823.
  • 24. Kneller B.C., Branney M.J. (1995) Sustained high-density turbidity currents and the deposition of thick massive sands. Sedimentology, 42: 607-616.
  • 25. Kneller B.C., Buckee C. (2000) The structure and fluid mechanics of turbidity currents: a review of some recent studies and their geological implications. Sedimentology, 47: 62-94.
  • 26. Kneller B.C., McCaffrey M.J. (1999) Depositional eftects of flow non-uniformity and stratification within turbidity currents approaching a bounding slope: detlection, retlection and facies variation. Journal of Sedimentary Research, 69: 980-991.
  • 27. Kneller B.C., McCaffrey W.D. (2003) The interpretation of vertical sequences in turbidite beds: the influence of longitudinal flow structure. Journal of Sedimentary Research, 73: 706-713.
  • 28. Kneller B.C., McCaffrey E.D., Moore R. (1991) Oblique reflection of turbidity currents. Geology, 19: 250-252.
  • 29. Koráb T. (1983) Geologická mapa Nízkych Beskýd - východná casť. Regionálne geologické mapy Slovenska M 1:50 000 (in Slovak). GÚDŠ, Bratislava.
  • 30. Koráb T., Ďurkovič T. (1978) Geológia dukelskej jednotky (Flyš východného Slovenska) (in Slovak). Geologický ústav Dionýza Štúra, Bratislava.
  • 31. Kuenen P.H. (1951) Properties of turbidi ty currents of high density. SEPM Special Publication, 2: 14-33.
  • 32. Kuenen P.H., Migliorini C.I. (1950) Turbidity currents as a cause of graded bedding. Journal of Geology, 58: 91-127.
  • 33. Lawrence G.A. (1993) The hydraulics of steady two-layerflow over a fixed obstacle. Journal of Fluid Mechanics, 254: 605-633.
  • 34. Leclair S.F., Arnott R.W.C. (2005) Parallel lamination formed by high-density turbidity currents. Journal of Sedimentary Research, 75: 784-797.
  • 35. Lewis D.W., McCounchie D. (1994) Practical Sedimentology. Chapman and Hall, Great Britain.
  • 36. Lowe D.R. (1976) Subaqueous liquified and fluidised sediment flows and their depos its. Sedimentology, 23: 285-308.
  • 37. Lowe D.R., Lopiccolo R.D. (1974) The characteristics and origins of dish and piliar structures. Journal of Sedimentary Petrology, 44: 484-501.
  • 38. Masson D.G., Niel B. van, Weaver P.P.E. (1997) Flow processes and sediment deformation in the Canary Debris Flow on the NW African Continental Rise. Sedimentary Geology, 110: 163-179.
  • 39. Mortimore R.N. (1979) Distal and proximal turbidites at Nilse Hullet, western south Georgia. British Antarctic Survey Bulletin, 47: 117-128.
  • 40. Mutti E. (1992) Turbidite Sandstones. AGIP - Instituto di Geologia, Universita di Parma. San Donato Milanese.
  • 41. Mutti E., Ricci Lucchi F. (1978) Turbidites of the northern Apennines: introduction to facies analysis. International Geology Review, 20: 125-166.
  • 42. Oszczypko N. (1999) From remnant oceanic basin to coli ision-related foreland basin - a tentative history of the Outer Carpathians. Geologica Carpathica, 50 (Spec. Issue): 161-163.
  • 43. Oszczypko N. (2006) Late Jurassic-Miocene evolution of the Outer Carpathian fold-and-thrust belt and its foredeep basin (Western Carpathians, Poland). Geological Quarterly, 50 (1): 169-194.
  • 44. Pickering K.T., Hiscott R.N. (1985) Contained (reflected) turbidi ty currents from the Middle Ordovician Cloridorme Formation, Quebec, Canada: an alternative to the antidune hypothesis. Sedimentology, 32: 373-394.
  • 45. Prekopová M., Janočko J. (2009) Quantitative approach in environmental interpretations of deep-marine sediments (Dukla Unit, Western Carpathian Flysch Zone). Geologica Carpathica, 60: 485-494.
  • 46. Reineck H.-E., Singh I.B. (1980) Depositional Sedimentary Environment. Springer, Berlin.
  • 47. Remacha E., Fernandez L.P. (2003) High-resolution correlation patterns in the turbidite systems of the Hecho Group (South- Central Pyrenees, Spain). Marine and Petroleum Geology, 20: 711-726.
  • 48. Rücklin H. (1938) Strömungsmarken im unteren Muschelkalk des Saarlandes. Senckenbergiana Lethea, 20: 94-114.
  • 49. Sanders J.E. (1965) Primary sedimentary structures formed by turbidity currents and related resedimentation mechanisms. SEPM Special Publication, 12: 192-219.
  • 50. Ślączka A., Kaminski M.A. (1998) A Guidebook to Excursions in the Polish Flysch Carpathians. Grzybowski Foundation Special Publication, 6.
  • 51. Ślaczka A., Walton E.K. (1992) Flow characteristics of Metresa: an Oligocene seismoturbidite in the Dukla Unit, Polish Carpathians. Sedimentology, 39: 383-392.
  • 52. Sparrow E.M., Husar R.B. (1969) Longitudinal vortices in natural convection flow on inclined plates. Journal of Fluid Mechanics, 37: 251-255.
  • 53. Stow D.A.V., Johansson M. (2000) Deep-water massive sands: nature and hydrocarbon implications. Marine and Petroleum Geology, 17: 145-174.
  • 54. Stow D.A.V., Mayall M. (2000) Deep-water sedimentary systems: New models for the 21st century. Marine and Petroleum Geology, 17: 125-135.
  • 55. Sumner E.J., Amy L., Talling P.J. (2008) Deposit structure and processes of sand deposition from decelerating sediment suspension. Journal of Sedimentary Research, 78: 529-547.
  • 56. Sumner E.J., Talling P.J., Amy L.A., Wynn R.B., Stevenson Ch.J., Frenz M. (2012) Facies architecture of individual basin-plain turbidites: comparison with existing models and applications for flow processes. Sedimentology, 59: 1850-1887.
  • 57. Talling P.J. (2013) Hybrid submarine flows comprising turbidity current and cohesive debris flow: deposits, theoretical and experimental analyses, and generalized models. Geosphere, 9: 460-488.
  • 58. Talling P.J., Masson D.G., Sumner E.J., Malgesini G. (2012) Sub- aqueous sediment density flows: depositional processes and deposit types. Sedimentology, 59: 1937-2003.
  • 59. Williams H.S. (1881) Channel fillings in Upper Devonian shales. American Journal of Science, 3rd series, 21: 318-320.
  • 60. Wright C.A. (1936) Experimental study of the scour of a sandy river bed by clear and by muddy water. Journal of Research of the National Bureau of Standards, 17: 193-206.
  • 61. Wynn R.B., Talling P.J., Masson D.G., Le Bas T.P., Cronin B.T., Stevenson Ch.J. (2002) The influence of subtle gradient changes on deep-water gravity flows: a case study from the Moroccan turbidite system. SEPM Special Publication, 99: 371-383.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5bc54c1e-e9e9-4833-993c-940a26f0443a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.