PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Prediction of the static elastic modulus of limestone using downhole seismic test in Asmari formation

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Determining the elastic modulus of rocks is one of the crucial parameters in civil and petroleum engineering. Asmari geological formation is widely outcropped in a significant part of the west and SW of Iran and NE of Iraq. Understanding the static elastic modulus of host rocks is crucial because of the design and construction of numerous geotechnical structures and the presence of large hydrocarbon reservoirs in this formation. To determine the elastic modulus of intact rocks, the uniaxial compressive strength test is typically used. However, in jointed rocks and deep areas, where obtaining samples may be challenging, costly, or even impossible, correlations between static-dynamic elastic modulus (Es — E d) is more frequently employed. Although some scholars have proposed correlations between Es - Ed, they had determined dynamic modules based on the ultrasonic test. In the aforementioned test, intact samples are used and the effect of discontinuities would not be considered; hence, the results cannot be considered as rock mass representative. In this study, to consider field geotechnical conditions, the dynamic modules were determined based on the downhole seismic test (DS) in a tunnel in located the west of Iran. Then from the results of static elastic modulus, which were obtained from core samples, a linear correlation was proposed between Es — Ed. The root-mean-square error and variance accounted showed that the predicted static elastic modulus by the proposed correlation is more accurate to a large extent. In addition, unlike the ultrasonic-based Ed, the results showed that the DS-based Ed is less than Es.
Czasopismo
Rocznik
Strony
247--255
Opis fizyczny
Bibliogr. 26 poz.
Twórcy
autor
  • Department of Civil Engineering, Faculty of Engineering, Soran University, Soran, Kurdistan Region, Iraq
  • Institute of Geophysics and Meteorology (IGM), University of Cologne, Cologne, Germany
  • Civil Engineering Department, Cihan University-Erbil, Erbil, Kurdistan Region, Iraq
  • Department of Civil Engineering, College of Engineering, University of Kirkuk, Kirkuk, Iraq
  • Civil Engineering Department, University of Halabja, Halabja, Kurdistan Region, Iraq
  • Mining Engineering Department, Faculty of Engineering, Lorestan University, Khorramabad, Iran
Bibliografia
  • 1. Al-Shayea NA (2004) Effects of testing methods and conditions on the elastic properties of limestone rock. Eng Geol 74:139-156. https:// doi.org/10.1016/j.enggeo.2004.03.007
  • 2. Asef MR, Farrokhrouz M (2017) A semi-empirical relation between static and dynamic elastic modulus. J Pet Sci Eng 157:359-363. https://doi.org/10.1016/j.petrol.2017.06.055
  • 3. Blake OO, Faulkner DR, Tatham DJ (2019) The role of fractures, effective pressure and loading on the difference between the static and dynamic Poisson’s ratio and Young’s modulus of Westerly granite. Int J Rock Mech Min Sci 116:87-98. https://doi.org/10.1016/j. ijrmms.2019.03.001
  • 4. Brotons V, Tomás R, Ivorra S, Grediaga A (2014) Relationship between static and dynamic elastic modulus of calcarenite heated at different temperatures: the San Julián’s stone. Bull Eng Geol Environ 73:791-799. https://doi.org/10.1007/s10064-014-0583-y
  • 5. Brotons V, Tomás R, Ivorra S, Grediaga A, Martínez-Martínez J, Benavente D, Gómez-Heras M (2016) Improved correlation between the static and dynamic elastic modulus of different types of rocks. Mater Struct 49:3021-3037. https://doi.org/10.1617/ s11527-015-0702-7
  • 6. Budetta P, De Riso R, De Luca C (2001) Correlations between jointing and seismic velocities in highly fractured rock masses. Bull Eng Geol Environ 60(3):185-192. https://doi.org/10.1007/s1006 40100097
  • 7. Chang C, Zoback MD, Khaksar A (2006) Empirical relations between rock strength and physical properties in sedimentary rocks. J Pet Sci Eng 51(3-4):223-237. https://doi.org/10.1016/j.petrol.2006. 01.003
  • 8. Ciccotti M, Mulargia F (2004) Differences between static and dynamic elastic moduli of a typical seismogenic rock. Geophys J Int 157(1):474-477. https://doi.org/10.1111/j.1365-246X.2004. 02213.x
  • 9. Davarpanah SM, Ván P, Vásárhelyi B (2020) Investigation of the relationship between dynamic and static deformation moduli of rocks. Geomech Geophys Geo-Energy Geo-Resour 6(1):1-14. https:// doi.org/10.1007/s40948-020-00155-z
  • 10. Deere DU, Miller RP (1966) Engineering classification and index properties for intact rocks. Technical Report No. AFNL-TR-65-116, Air Force Weapons Laboratory, New Mexico
  • 11. Fj$r E (2019) Relations between static and dynamic moduli of sedimentary rocks. Geophys Prospect 67(1):128-139. https://doi.org/ 10.1111/1365-2478.12711
  • 12. Fjar E, Holt RM, Horsrud P, Raaen AM (2008) Petroleum related rock mechanics. Elsevier, Amsterdam
  • 13. Fowzia HA (2021) Porosity and permeability of karst carbonate rocks along an unconformity outcrop: a case study from the Upper Dammam formation exposure in Kuwait, Arabian Gulf. Heliyon 7(7):e07444. https://doi.org/10.1016/j.heliyon.2021.e07444
  • 14. Guo S, Zhang Y, Iraji A, Gharavi H, Deifalla AF (2022) Assessment of rock geomechanical properties and estimation of wave velocities. Acta Geophys. https://doi.org/10.1007/s11600-022-00891-8
  • 15. Guoliang D, Jun L (2020) Using P-wave propagation velocity to characterize damage and estimate deformation modulus of in-situ rock mass. Eur J Environ Civ Eng 26(6):2143-2157. https://doi.org/10. 1080/19648189.2020.1752807
  • 16. Khosravi M, Tabasi S, Hany H, Motahari MR, Alizadehe SM (2022) Evaluation and prediction of the rock static and dynamic parameters. J Appl Geophys 199:104581. https://doi.org/10.1016/j.jappg eo.2022.104581
  • 17. Kujundzic B, Grujic N (1966) Correlation between static and dynamic investigations of rock mass in situ. In 1st ISRM congress. International society for rock mechanics and rock engineering. Lisbon, Portugal
  • 18. Martínez-Martínez J, Benavente D, García-del-Cura MA (2012) Comparison of the static and dynamic elastic modulus in carbonate rocks. Bull Eng Geol Environ 71(2):263-268. https://doi.org/10. 1007/s10064-011-0399-y
  • 19. Mockoviakova A, Pandula B (2003) Study of the relation between the static and dynamic moduli of rocks. Metalurgija 42:37-39
  • 20. Mohammed SA, Smart BGD, Somerville JMC, Hammilton S, Nassir AN (2009) Prediction rock mechanical properties of carbonated from wireline logs (a case study: Arab-D reservoir, Ghawar field, Saudi Arabia). Mar Pet Geol 26(4):430-444. https://doi.org/10. 1016/j.marpetgeo.2009.01.017
  • 21. Moradian ZA, Behnia M (2009) Predicting the uniaxial compressive strength and static Young’s modulus of intact sedimentary rocks using the ultrasonic test. Int J Geomech 9(1):14-19. https://doi. org/10.1061/(ASCE)1532-3641(2009)9:1(14)
  • 22. Najibi A, Ghafoori M, Lashkaripour G, Asef MR (2015) Empirical relations between strength and static and dynamic elastic properties of Asmari and Sarvak limestones, two main oil reservoirs in Iran. J Pet Sci Eng 126:78-82. https://doi.org/10.1016/j.petrol. 2014.12.010
  • 23. Onalo D, Oloruntobi O, Adedigba S, Khan F, James L, Butt S (2018) Static Young’s modulus model prediction for formation evaluation. J Pet Sci Eng 171:394-402. https://doi.org/10.1016/j.petrol. 2018.07.020
  • 24. Sadeghi R, Moussavi-Harami R, Kadkhodaie A, Mahboubi A, Ashtari A (2021) Reservoir rock typing of the Asmari Formation using integrating geological and petrophysical data for unraveling the reservoir heterogeneity: a case study from the Ramshir oilfield, southwest Iran. Carbonates Evaporites 36:1-28. https://doi.org/ 10.1007/s13146-021-00692-y
  • 25. Saroglou C, Kallimogiannis V (2017) Fracturing process and effect of fracturing degree on wave velocity of a crystalline rock. J Rock Mech Geotech Eng 9(5):797-806. https://doi.org/10.1016/j.jrmge. 2017.03.012
  • 26. Yang H, Duan HF, Zhu J (2020) Effects of filling fluid type and composition and joint orientation on acoustic wave propagation across individual fluid-filled rock joints. Int J Rock Mech Min Sci 128:104248. https://doi.org/10.1016/j.ijrmms.2020.104248
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5bc244f5-043c-4031-97ea-6bcc72e5e47e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.