PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Design of an Ultra-Low Power CT Σ∆ A/D Modulator in 65nm CMOS for Cardiac Pacemakers: From System Synthesis to Circuit Implementation

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A high performance, ultra-low power, fully differentia 2nd-order continuous-time Σ∆ analogue-to-digital modulator for cardiac pacemakers is presented in this paper. The entire design procedure is described in detail from the high-level system synthesis in both discrete and continuous-time domain, to the low-level circuit implementation of key functional blocks of the modulator. The power consumption of the designed modulator is rated at 182nA from a 1.2V power supply, meeting the ultra-low power requirement of the cardiac pacemaker applications. A 65nm CMOS technology is employed to implement the Σ∆ modulator. The modulator achieves a simulated SNR of 53.8dB over a 400 Hz signal bandwidth, with 32KHz sampling frequency and an oversampling ratio of 40. The active area of the modulator is 0.45×0.50mm².
Twórcy
autor
  • Department of Electronic Systems, Aalborg University, Niels Jernes Vej 12, 9220 Aalborg East, Denmark
autor
  • Institut Telecom, Telecom ParisTech, 46 Rue Barrault, 75013 Paris, France
Bibliografia
  • [1] O. Aquilina, “A Brief History of Cardiac Pacing,” Images Paediatr Cardiol, vol. 8, no. 2, pp. 17–81, 2006.
  • [2] M. A. Karami and D. J. Inman, “Powering Pacemakers from Heartbeat Vibrations using Linear and Nonlinear Energy Harvesters,” Applied Physics Letters, vol. 100, no. 4, p. 042901, 2012, doi 10.1063/1.3679102.
  • [3] R. Schreier and G. C. Temes, Understanding Delta-Sigma Data Converters, 1st ed. Wiley-IEEE Press, November 2004, isbn 0471465852.
  • [4] M. Ortmanns and F. Gerfers, Continuous-Time Sigma-Delta A/D Conversion: Fundamentals, Performance Limits and Robust Implementations, ser. Springer Series in Advanced Microelectronics. Springer, 2006, isbn 3540284060.
  • [5] T. Song, Z. Cao, and S. Yan, “A 2.8-mW 2-MHz Continuous-Time Σ∆ Modulator With a Hybrid Active-Passive Loop Filter,” IEEE Journal of Solid-State Circuits, vol. 43, no. 2, pp. 330–341, 2008.
  • [6] J. Zhang, Y. Lian, L. Yao, and B. Shi, “A 0.6-V 82-dB 28.6-uW Continuous-Time Audio Delta-Sigma Modulator,” IEEE Journal of Solid-State Circuits, vol. 46, no. 10, pp. 2326–2335, 2011.
  • [7] E. López-Morillo, F. Muñoz, A. Torralba, F. Márquez, I. Rebolle, and J. R. Garcia-Oya, “Compact Low-Power Implementation for Continuous-Time Σ∆ Modulators,” Integration, the VLSI Journal, vol. 46, no. 4, pp. 441–448, 2012.
  • [8] J. Garcia, S. Rodriguez, and A. Rusu, “A Low-Power CT Incremental 3rd Order Σ∆ ADC for Biosensor Applications,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 60, no. 1, pp. 25–36, 2013.
  • [9] B. E. Boser and B. A. Wooley, “The Design of Sigma-Delta Modulation Analog-to-Digital Converters,” IEEE Journal of Solid-State Circuits, vol. 23, no. 6, pp. 1298–1308, 1988.
  • [10] D. A. Johns and K. Martin, Analog Integrated Circuit Design, 1st ed. Wiley, 1996, isbn 0471144487.
  • [11] T. B. Cho and P. R. Gray, “A 10 b, 20 Msample/s, 35 mW Pipeline A/D Converter,” IEEE Journal of Solid-State Circuits, vol. 30, no. 3, pp. 166–172, 1995.
  • [12] D. De Venuto, D. T. Castro, Y. Ponomarev, and E. Stikvoort, “0.8μW 12-bit SAR ADC Sensors Interface for RFID Applications,” Microelectronics Journal, vol. 41, pp. 746–751, 2010.
  • [13] J. H. Cheong, K. L. Chan, P. B. Khannur, K. T. Tiew, and M. Je, “A400-nW 19.5-fJ/Conversion-Step 8-ENOB 80-kS/s SAR ADC in 0.18-μm CMOS,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 58, no. 7, pp. 407–411, 2011.
  • [14] D. Zhang, A. Bhide, and A. Alvandpour, “A 53-nW 9.1-ENOB 1-kS/s SAR ADC in 0.13-μm CMOS for Medical Implant Devices,” IEEE Journal of Solid-State Circuits, vol. 47, no. 7, pp. 1585–1593, 2012.
  • [15] I. Kianpour, M. Baghaei-Nejad, and L. Zheng, “78 nW Ultra-Low-Power 17 kS/s Two-Step-Successive Approximation Register Analogue-to-Digital Converter for RFID and Sensing Applications,” IET Circuits, Devices & Systems, vol. 6, no. 6, pp. 397–405, 2012.
  • [16] W. Hu, Y. Liu, T. Nguyen, D. Y. C. Lie, and B. P. Ginsburg, “An 8-Bit Single-Ended Ultra-Low-Power SAR ADC With a Novel DAC Switching Method and a Counter-Based Digital Control Circuitry,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 60, no. 7, pp. 1726–1739, 2013.
  • [17] Y. Li, D. Zhao, and W. A. Serdijn, “A Sub-Microwatt Asynchronous Level-Crossing ADC for Biomedical Applications,” IEEE Transactions on Biomedical Circuits and Systems, vol. 7, no. 2, pp. 149–157, 2013.
  • [18] C. Yuan and Y. Y. H. Lam, “A 281-nW 43.3 fJ/Conversion-Step 8-ENOB 25-kS/s Asynchronous SAR ADC in 65nm CMOS for Biomedical Applications,” in IEEE International Symposium on Circuits and Systems (ISCAS), Beijing, China, May 2013, pp. 622–625
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5bbfec0a-daaa-4704-8d28-529c13b2afc4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.