PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of Welding Parameters and Metal Arrangement of the AA2024-T3 on the Quality and Strength of FSW Lap Joints for Joining Elements of Landing Gear Beam

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents the possibility of using FSW technology for joining elements of a landing gear beam of the M28 aircraft. The FSW process was performed on a 4-axis numerical machine under industrial conditions. However, before welding was carried out under industrial conditions, preliminary experimental tests were carried out under laboratory conditions. Preliminary research was carried out for AA2024-T3 aluminum sheets of 1 mm and 3 mm in thickness, joined in a lap configuration. The influence of technological and geometric parameters of the process on the quality and strength of the weld was examined. Sheet metal arrangement was analyzed. Tests were carried out for two configurations. The first of which with 1 mm sheet on the top and 3 mm sheet on the bottom and in reverse order. It has been shown that setting a thicker plate on the top gives a 40% better strength. The microhardness and microstructure of the weld were tested. During the laboratory tests, low-cycle fatigue tests of the FSW lap joint were performed. It has been shown that the FSW method can be an alternative to the riveting process in the production of aviation structure elements.
Twórcy
  • Rzeszow University of Technology, 12 Powstańców Warszawy Av, 35-959 Rzeszów, Poland
autor
  • Rzeszow University of Technology, 12 Powstańców Warszawy Av, 35-959 Rzeszów, Poland
autor
  • Rzeszow University of Technology, 12 Powstańców Warszawy Av, 35-959 Rzeszów, Poland
autor
  • Ultratech Sp. z.o.o, 4A Fabryczna Rd. 39-120 Sedziszow Mlp. Poland
autor
  • Rzeszow University of Technology, 12 Powstańców Warszawy Av, 35-959 Rzeszów, Poland
Bibliografia
  • [1] W. M. Thomas, Nicholas, both of Haverhill; James C. Needham, Saffron Walden; Michael G. Murch, Herts; Peter Temple Smith, Cambridge; Christopher J. Dawes, Cambs, all of United Kingdom, s. 19, 1995.
  • [2] G. K. Padhy, C. S. Wu, S. Gao, Friction stir based welding and processing technologies - processes, parameters, microstructures and applications: A review, Journal of Materials Science & Technology 34, 1, 1-38, (2018), doi: 10.1016/j.jmst.2017.11.029.
  • [3] M. K. Kulekci, U. Esme, B. Buldum, Critical analysis of friction stir-based manufacturing processes, The International Journal of Advanced Manufacturing Technology 85, 5-8, 1687-1712, (2016), doi: 10.1007/s00170-015-8071-5.
  • [4] W. J. Arbegast, A flow-partitioned deformation zone model for defect formation during friction stir welding, Scripta Materialia 58, 5, 372-376 (2008), doi: 10.1016/j.scriptamat.2007.10.031.
  • [5] S. Bag, D. Yaduwanshi, S. Pal, Heat transfer and material flow in friction stir welding, w Advances in Friction-Stir Welding and Processing, Elsevier, 21-63 (2014).
  • [6] H. Liu, Y. Hu, Y. Peng, C. Dou, Z. Wang, The effect of interface defect on mechanical properties and its formation mechanism in friction stir lap welded joints of aluminum alloys, Journal of Materials Processing Technology 238, 244-254 (2016), doi: 10.1016/j.jmatprotec.2016.06.029.
  • [7] R. K. Bhushan, D. Sharma, Green welding for various similar and dissimilar metals and alloys: present status and future possibilities, Adv Compos Hybrid Mater. 2, 3, 389-406 (2019), doi: 10.1007/s42114-019-00094-8.
  • [8] H. Doude, J. Schneider, B. Patton, S. Stafford, T. Waters, C. Varner, Optimizing weld quality of a friction stir welded aluminum alloy, Journal of Materials Processing Technology 222, 188-196 (2015), doi: 10.1016/j.jmatprotec.2015.01.019.
  • [9] R. A. Gite, P. K. Loharkar, R. Shimpi, Friction stir welding parameters and application: A review, Materials Today: Proceedings, 2019, doi: 10.1016/j.matpr.2019.07.613.
  • [10] Y. N. Zhang, X. Cao, S. Larose, P. Wanjara, Review of tools for friction stir welding and processing, Canadian Metallurgical Quarterly 51, 3, 250-261 (2012), doi: 10.1179/1879139512Y.0000000015.
  • [11] R. Rai, A. De, H. K. D. H. Bhadeshia, T. DebRoy, Review: friction stir welding tools, Science and Technology of Welding and Joining 16, 4, 325-342 (2013), doi: 10.1179/1362171811y.0000000023.
  • [12] B. Farahmand, G. Bockrath, J. Glassco, Fatigue and Fracture Mechanics of High Risk Parts. Boston, MA: Springer US, 1997.
  • [13] O. S. Salih, H. Ou, W. Sun, D. G. McCartney, A review of friction stir welding of aluminium matrix composites, Materials & Design86, 61-71 (2015), doi: 10.1016/j.matdes.2015.07.071.
  • [14] P. S. De, R. S. Mishra, Friction stir welding of precipitation strengthened aluminium alloys: scope and challenges, Science and Technology of Welding and Joining 16, 4, 343-347 (2011), doi: 10.1179/1362171811Y.0000000020.
Uwagi
EN
1. The work was carried out in the framework of SAT-AM project AIRFRAME ITD. Grant Agreement No: CS2-AlR-GAM-2014-2015-01 (annex III), Topic: JTI-CS2-2015-CPW02-AIR-02-07 Proposal Number/ Acronym: 699757/SAT-AM.
PL
2. Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5bbf3c18-4c48-4952-98c3-651a327a256f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.