PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Porous Composite for Bipolar Plate in Low Emission Hydrogen Fuel Cells

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents the results of graphite-stainless steel composites for the bipolar plates in low-temperature fuel cells. The sinters were performed by powder metallurgy technology. The influence of technological parameters, especially molding pressure were examined. Following the requirements formulated by the DOE concerning the parameters of the materials, it indicated by the value of the parameters. The density, flowability, particle size of graphite and stainless steel powders have been evaluated. Composites have been tested by microstructure and phase analysis, properties of strength, functional properties: wettability, porosity, roughness. The special attention was paid to the analysis of corrosion resistance obtained sinters and influence of technological parameters on the corrosion. Corrosion tests were carried out under conditions simulating the environment of the fuel cell under anode and cathode conditions. The effect of pH solution during working of the cell on corrosion resistance of composites have been evaluated. Contact resistance depends on roughness of sinters. Low ICR determined high contact area GDL-BP and high electrical conductivity on the contact surface. The ICR in anode conditions after corrosion tests are not change significantly; composite materials can be used for materials for BP in terms of H2.
Rocznik
Strony
225--232
Opis fizyczny
Bibliogr. 22 poz., rys., tab.
Twórcy
  • Department of Energy Engineering, Faculty of Infrastructure and the Environment, Czestochowa University of Technology, Poland
Bibliografia
  • 1. Andre J, Antoni L, Petit J-P, 2010. Corrosion resistance of stainless steel bipolar plates in a PEMFC environment: A comprehensive study. Int J Hydrogen Energy; 35: 3684-97.
  • 2. Antunes RA, Oliveira MCL, Ett G, Ett V, 2010. Corrosion of metal bipolar plates for PEM fuel cells: A review. Int. Journal of Hydrogen Energy; 35: 3632-47.
  • 3. Borup RL, Vanderborgh NE, 1995. Design and testing criteria for bipolar plate materials for PEM fuel cell applications. Mater Res Soc Symp Proc; 393: 151-5.
  • 4. Ciao K, Zhou B, 2008. Effects of electrode wettabilities on liquid water behaviors in PEM fuel cel cathode. J. Power Sources; 175: 106-19.
  • 5. El-Enim SAA, Abdel-Salam OE, El-Abd H, Amin AM, 2008. New electroplated aluminum bipolar plate for PEM fuel cell. J Power Sources; 177: 131-136.
  • 6. Fu,Y, Lin G, Hou M, Wu B, Li H, Hao L, Shao Z, Yi B, 2009. Optimized Cr-nitride film on 316L stainless steel as proton exchange membrane fuel cel bipolar plate, Int J Hydrogen Energy; 34: 453-58.
  • 7. Geng S, Li Y, Ma Z, Wang L, Wang F., 2010. Evaluation of electrodeposited Fe-Ni Alloy on ferritic stainless steel solid oxide fuel Cell. J Power Sources; 195: 3256-60.
  • 8. Hermann A, Chaudhuri T, Spagnol T, 2005. Bipolar plates for PEM fuel cells: A review. Int. J. Hydrogen Energy; 30: 1297-302.
  • 9. Husby H, Kongstein OE, Oedegaard A, Seland F, 2014. Carbon-polymer composites coatings for PEM fuel cell bipolar plates, Int J Hydrogen Energy; 39: 951-57.
  • 10. Kang K, Park S, Jo A, Lee K, Ju H, 2016. Development of ultralight and thin bipolar plates using epoxy-carbon fiber prepregs and graphite composites. Int. Journal of Hydrogen Energy; http://dx.doi.org/10.1016/jijhydene (2016.05.27).
  • 11. Kraytsberg A, Auinat M, Ein-Eli Y, 2007. Reduced contact resistance of PEM fuel cell’s bipolar plates via surface texturing. J Powers Sources; 164: 697-703.
  • 12. Larijani MM, Yari M, Afshar A, Jafarian M, Eshghabadi M, 2011. A comparison of carbon coated and uncoted 316L stainless steel for using as bipolar plates in PEMFCs. J Alloys and Comp;509: 7400-04.
  • 13. Nikam VV, 2006. Reddy RG, Copper alloy bipolar plates for polymer electrolyte membrane fuel cell. Electrochim Acta; 51: 6338-45.
  • 14. Nikam VV, Reddy RG, 2005. Corrosion studies of a copper-berylium alloy in a simulated polimer electrolyte membrane fuel cell environment. J Power Sources; 152: 146-55.
  • 15. Pozio A, Silva RF, Masci A, 2008. Corrosion study of SS430/Nb as bipolar plate materials for PEMFCs. Int J Hydrogen Energy; 33: 5697-702.
  • 16. Shimpalee S., Lilavivat V, McCrabb H, Khunatorn Y, Lee H-K, Lee W-K, Weidner JW, 2016. Investigation of bipolar plate materials for proton exchange membrane fuel cells. Int. Journal of Hydrogen Energy; http://dx.doi.org/10.1016/jijhydene (2016.05.16).
  • 17. Show Y, 2007. Electrically conductive amorphous carbon coating on metal bipolar plates for PEFC. Surf Coat Technol; 202: 1252-5.
  • 18. Show Y, Miki M, Nakamura T, 2007. Increased in output power from fuel cell used metal bipolar plate coated with a – C film. Diamond Relat Mater; 16: 1159-61.
  • 19. Tawfik H, Hung Y, Mahajan D, 2007. Metal bipolar plates for PEM fuel cell – A review. J. Power Sources; 163: 755-63.
  • 20. Wang SH, Peng J, Lui WB, Zhang JS, 2006. Performance of the gold-plated titanium bipolar plates for the light weight PEM fuel cells. J Power Sources; 162: 486-91.
  • 21. Wlodarczyk R, 2015. Porous carbon materials for elements in low-temperature fuel cells. Arch Metall Mater; 60(1): 117-20.
  • 22. Wlodarczyk R, Wrońska A, 2013. Effect of pH on corrosion of sintered stainless steels used for bipolar plates in polymer exchange membrane fuel cells. Arch Metall Mater; 58(1): 89-93.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5bb60583-f2f0-457e-b697-bc2ac0240bda
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.