PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Past and future annual droughts in the five agro-ecological zones of Cameroon

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper studies the past and future annual droughts in the five agro-ecological zones (AEZs) of Cameroon. Station data and model outputs from the Coupled Model Intercomparison Project Phase 5 were used to compute areal datasets for each AEZ. Six statistical metrics and compromise programming method were used to evaluate and rank the models, respectively. The top three models were used to build multi-model ensemble (MME) and deduce bias-corrected MME data. They were then used to compute the Standardized Precipitation Index (SPI) used as drought indicator. As a result, the performance of the models depends on the AEZ and decreases with the increase in drought intensity. The 1980s was the most marked by severe-extreme droughts and a significant increase in drought intensity was observed in the entire domain during the past period, the years 1974, 1985 and 1988 showing the highest drought intensities. The MME tends to overestimate and underestimate the frequencies and the magnitude of these events, respectively. Bias-corrected MME data improve the results in most cases. As for the period 2071-2099, all the AEZs are likely to experience severe-extreme droughts which are expected to be more frequent before 2083 in the North (AEZs 1 and 2) and after this year in the South (AEZs 3, 4 and 5). It is also expected a slight increasing trend of the mean spatial SPIs showing a slight decrease in drought intensity. The RCPs 8.5 and 2.6 project the lowest and the highest decrease in drought intensity, respectively, while the RCP4.5 shows an average decrease. This study highlights future periods and areas at potential risk of severe-extreme droughts and can guide decision-makers in mitigation and adaptation measures.
Czasopismo
Rocznik
Strony
2127--2140
Opis fizyczny
Bibliogr. 63 poz.
Twórcy
  • Department of Physics, University of Dschang, Dschang, Cameroon
  • Department of Physics, University of Dschang, Dschang, Cameroon
  • Department of Physics, University of Yaounde 1, Yaoundé, Cameroon
  • Earth System Physics Section, The Abdus salam ICTP, 34151 Trieste, Italy
  • Department of Physics, University of Yaounde 1, Yaoundé, Cameroon
  • Department of Physics, University of Yaounde 1, Yaoundé, Cameroon
autor
  • Department of Physics, University of Yaounde 1, Yaoundé, Cameroon
  • Department of Physics, University of Yaounde 1, Yaoundé, Cameroon
  • Department of Physics, University of Yaounde 1, Yaoundé, Cameroon
  • Department of Meteorology and Climatology, Advanced School of Agriculture, Forestry, Water Resources and Environment, University of Ebolowa, Ebolowa, Cameroon
autor
  • National Institute for Cartography, Yaoundé, Cameroon
  • Department of Physics, University of Yaounde 1, Yaoundé, Cameroon
Bibliografia
  • 1. Ajayi VO, Ilori OW (2020) Projected drought events over west Africa using rca4 regional climate model. Earth Syst Environ 4:329-348. https://doi.org/10.1007/s41748-020-00153-x
  • 2. Akinsanola A, Zhou W (2019) Ensemble-based cmip5 simulations of west African summer monsoon rainfall: current climate and future changes. Theor Appl Climatol 136:1021-1031. https://doi.org/10. 1007/s00704-018-2516-3
  • 3. Akinsanola A, Ajayi V, Adejare A et al (2018) Evaluation of rainfall simulations over west Africa in dynamically downscaled cmip5 global circulation models. Theor Appl Climatol 132:437-450. https://doi.org/10.1007/s00704-017-2087-8
  • 4. Ali Z, Hamed MM, Muhammad MKI et al (2023) Performance evaluation of cmip6 GCMS for the projections of precipitation extremes in Pakistan. Clim Dyn. https://doi.org/10.1007/ s00382-023-06831-6
  • 5. Aqilah Tukimat NN (2018) Assessing the implementation of bias correction in the climate prediction. In: IOP conference series: materials science and engineering, IOP Publishing, p 012004, https:// doi.org/10.1088/1757-899X/342/1/012004
  • 6. Azizi H, Nejatian N (2022) Evaluation of the climate change impact on the intensity and return period for drought indices of SPI and SPEI (study area: Varamin plain). Water Supply 22(4):4373-4386. https://doi.org/10.2166/ws.2022.056
  • 7. Band SS, Karami H, Jeong YW et al (2022) Evaluation of time series models in simulating different monthly scales of drought index for improving their forecast accuracy. Front Earth Sci 10(839):527. https://doi.org/10.3389/feart.2022.839527
  • 8. Bento VA, Russo A, Vieira I et al (2023) Identification of forest vulnerability to droughts in the Iberian peninsula. Theor Appl Climatol. https://doi.org/10.1007/s00704-023-04427-y
  • 9. Diatta S, Mbaye ML, Sambou S (2020) Evaluating hydro-climate extreme indices from a regional climate model: a case study for the present climate in the casamance river basin, southern senegal. Sci Afr 10(e00):584. https://doi.org/10.1016/j.sciaf.2020.e00584
  • 10. Dikici M (2020) Drought analysis with different indices for the ASI Basin (Turkey). Sci Rep 10(1):20,739. https://doi.org/10.1038/ s41598-020-77827-z
  • 11. Douville H, Raghavan K, Renwick J, et al (2021) Water cycle changes climate change 2021: The physical science basis contribution of working group i to the sixth assessment report of the intergovernmental panel on climate change
  • 12. Gebremichael HB, Raba GA, Beketie KT et al (2022) Temporal and spatial characteristics of drought, future changes and possible drivers over upper awash basin, Ethiopia, using SPI and SPEI. Environ Devel Sustain. https://doi.org/10.1007/s10668-022-02743-3
  • 13. Gonęalves STN, Vasconcelos Júnior FC, Silveira CS et al (2023) Comparative analysis of drought indices in hydrological monitoring in ceará’s semi-arid Basins, Brazil. Water 15(7):1259. https://doi. org/10.3390/w15071259
  • 14. Guenang G, Komkoua Mbienda A, Djiotang Tchotchou L, et al (2022) Comparative study of two drought description models in central-africa: the revisited effective drought index and the standardized precipitation index. Modeling Earth Systems and Environment pp 1-18
  • 15. Guttman NB (1999) Accepting the standandardized precipitation index: a calculation algorithm. J Amer Water Resour Assoc 35(2):311-322
  • 16. Haile GG, Tang Q, Hosseini-Moghari SM et al (2020) Projected impacts of climate change on drought patterns over East Africa. Earth’s Future 8(7):e2020EF001,502. https://doi.org/10.1029/ 2020EF001502
  • 17. Hartmann DL, Tank AMK, Rusticucci M, et al (2013) Observations: atmosphere and surface. In: Climate change 2013 the physical
  • 18. science basis: working group I contribution to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, p 159-254, https://doi.org/10.1017/ CBO9781107415324.008
  • 19. Huang D, Yan P, Zhu J et al (2018) Uncertainty of global summer precipitation in the cmip5 models: a comparison between highresolution and low-resolution models. Theor Appl Climatol 132:55-69. https://doi.org/10.1007/s00704-017-2078-9
  • 20. Husak GJ, Michaelsen J, Funk C (2007) Use of the gamma distribution to represent monthly rainfall in Africa for drought monitoring applications. Int J Climatol J R Meteorol Soc 27(7):935-944. https://doi.org/10.1002/joc.1441
  • 21. Hussain A, Jadoon KZ, Rahman KU et al (2023) Analyzing the impact of drought on agriculture: evidence from Pakistan using standardized precipitation evapotranspiration index. Natl Hazards 115(1):389-408. https://doi.org/10.1007/ s11069-022-05559-6
  • 22. Klutse NAB, Ajayi VO, Gbobaniyi EO et al (2018) Potential impact of 1.5 c and 2 c global warming on consecutive dry and wet days over west Africa. Environ Res Lett 13(5):055,013. https://doi. org/10.1088/1748-9326/aab37b
  • 23. Lebel T, Cappelaere B, Galle S et al (2009) Amma-catch studies in the Sahelian region of west-Africa: An overview. J Hydrol 375(1-2):3-13. https://doi.org/10.1016/j.jhydrol.2009.03.020
  • 24. Masih I, Maskey S, Mussá F et al (2014) A review of droughts on the African continent: a geospatial and long-term perspective. Hydrol Earth Syst Sci 18(9):3635-3649. https://doi.org/10. 5194/hess-18-3635-2014
  • 25. McKee T, Doesken N, Kliest J (1993) The relationship of drought frequency and duration to time scales. in proceedings of the 8th conference of applied climatology, 17-22 January, Anaheim, CA. American Meterological Society, Boston, Massachusetts, pp. 179-184
  • 26. McMahon T, Peel M, Karoly D (2015) Assessment of precipitation and temperature data from cmip3 global climate models for hydrologic simulation. Hydrol Earth Syst Sci 19(1):361-377. https://doi.org/10.5194/hess-19-361-2015
  • 27. Mehta DJ, Yadav S (2023) Meteorological drought analysis in Pali district of Rajasthan state using standard precipitation index. Int J Hydrol Sci Technol 15(1):1-10. https://doi.org/10.1504/ IJHST.2023.127880
  • 28. Mendez M, Maathuis B, Hein-Griggs D et al (2020) Performance evaluation of bias correction methods for climate change monthly precipitation projections over costa Rica. Water 12(2):482. https://doi.org/10.3390/w12020482
  • 29. Minea I, Iosub M, Boicu D (2022) Multi-scale approach for different type of drought in temperate climatic conditions. Natl Hazards 110(2):1153-1177. https://doi. org/10. 1007/ s11069-021-04985-2
  • 30. Mishra D, Goswami S, Matin S et al (2022) Analyzing the extent of drought in the Rajasthan state of India using vegetation condition index and standardized precipitation index. Model Earth Syst Environ 8:601-610. https://doi.org/10.1007/s40808-021-01102-x
  • 31. Moss RH, Edmonds JA, Hibbard KA et al (2010) The next generation of scenarios for climate change research and assessment. Nature 463(7282):747-756. https://doi.org/10.1038/nature08823
  • 32. Muhammad MKI, Nashwan MS, Shahid S et al (2019) Evaluation of empirical reference evapotranspiration models using compromise programming: A case study of peninsular malaysia. Sustainability 11(16):4267. https://doi.org/10.3390/su11164267
  • 33. Mupepi O, Matsa MM (2023) A combination of vegetation condition index, standardized precipitation index and human observation in monitoring spatio-temporal dynamics of drought. A case of Zvishavane district in Zimbabwe. Environ Dev. https://doi.org/ 10.1016/j.envdev.2023.100802
  • 34. Nakicenovic N, Alcamo J, Davis G, et al (2000) Special report on emissions scenarios
  • 35. Nashwan MS, Shahid S (2020) A novel framework for selecting general circulation models based on the spatial patterns of climate. Int J Climatol 40(10):4422-4443. https://doi.org/10.1002/joc.6465
  • 36. NET F (2019) Cameroon livelihood zone map and descriptions. FEWS NET, Washington
  • 37. Nfornkah BN, Enongene K, Kaam R, et al (2021) Growth potential and sustainability of economically important rattan species in agro-ecological zones of cameroon. INBAR Working Paper
  • 38. Njouenwet I, Tchotchou LAD, Ayugi BO et al (2022) Spatiotemporal variability, trends, and potential impacts of extreme rainfall events in the Sudano-Sahelian region of Oameroon. Atmosphere 13(10):1599. https://doi.org/10.3390/atmos13101599
  • 39. Noor M, Tb I, Shahid S et al (2019) Selection of cmip5 multi-model ensemble for the projection of spatial and temporal variability of rainfall in peninsular Malaysia. Theor Appl Climatol 138:9991012. https://doi.org/10.1007/s00704-019-02874-0
  • 40. Penlap K, Matulla C, Storch H et al (2004) Downscaling of GCM scenarios to assess precipitation changes in the little rainy season (March-June) in Cameroon. Clim Res 26:85-96. https://doi.org/ 10.3354/cr026085
  • 41. Pieper P, Düsterhus A, Baehr J (2020) Global and regional performances of SPI candidate distribution functions in observations and simulations. Hydrol Earth Syst Sci Discuss. https://doi.org/ 10.5194/hess-2019-614
  • 42. Poff B, Tecle A, Neary DG et al (2010) Compromise programming in forest management. J Arizona-Nevada Acad Sci 42(1):44-60. https://doi.org/10.2181/036.042.0107
  • 43. Quenum GML, Klutse NA, Dieng D et al (2019) Identification of potential drought areas in west Africa under climate change and variability. Earth Syst Environ 3:429-444. https://doi.org/10.1007/ s41748-019-00133-w
  • 44. Raziei T (2021) Performance evaluation of different probability distribution functions for computing standardized precipitation index over diverse climates of iran. Int J Climatol 41(5):3352-3373. https://doi.org/10.1002/joc.7023
  • 45. Salehie O, Hamed MM, Tb I et al (2023) Selection of cmip6 GCM with projection of climate over the amu Darya river basin. Theor Appl Climatol 151(3-4):1185-1203. https://doi.org/10.1007/ s00704-022-04332-w
  • 46. Salman SA, Nashwan MS, Ismail T et al (2020) Selection of cmip5 general circulation model outputs of precipitation for peninsular Malaysia. Hydrol Res 51(4):781-798. https://doi.org/10.2166/nh. 2020.154
  • 47. Santé N, N’Go YA, Soro GE et al (2019) Characterization of meteorological droughts occurrences in cote d’ivoire: case of the Sas-sandra watershed. Climate 7(4):60. https://doi.org/10.3390/cli70 40060
  • 48. Santos CAG, Brasil Neto RM, da Silva RM et al (2019) Innovative approach for geospatial drought severity classification: a case study of paraíba state, brazil. Stoch Environ Res Risk Assess 33(2):545-562. https://doi.org/10.1007/s00477-018-1619-9
  • 49. Shidiki AA, Haman U (2020) A study on the possible inclusion of agro-ecology into the climate policy framework of Cameroon, 2nd edn. Mboscuda National Yaounde, Cameroon
  • 50. Singh AK, Kumar P, Ali R et al (2022) An integrated statistical-machine learning approach for runoff prediction. Sustainability 14(13):8209. https://doi.org/10.3390/su14138209
  • 51. Spinoni J, Naumann G, Carrao H et al (2014) World drought frequency, duration, and severity for 1951-2010. Int J Climatol 34(8):2792-2804. https://doi.org/10.1002/joc.3875
  • 52. Spinoni J, Naumann G, Vogt J (2015) Spatial patterns of European droughts under a moderate emission scenario. Adv Sci Res 12:179-186. https://doi.org/10.5194/asr-12-179-2015
  • 53. Srinivasa Raju K, Sonali P, Nagesh Kumar D (2017) Ranking of cmip5-based global climate models for India using compromise programming. Theor Appl Climatol 128:563-574. https://doi.org/10.1007/ s00704-015-1721-6
  • 54. Svoboda M, Hayes M, Wood D (2012) Standardized precipitation index: user guide. WMO-1090, Geneva
  • 55. Sylla MB, Nikiema PM, Gibba P, et al (2016) Climate change over west africa: Recent trends and future projections. Adaptation to climate change and variability in rural West Africa pp 25-40. https://doi. org/10.1007/978-3-319-31499-0_3
  • 56. Taylor KE, Stouffer RJ, Meehl GA (2012) An overview of cmip5 and the experiment design. Bullet Am Meteorol Soc 93(4):485-498. https://doi.org/10.1175/BAMS-D-11-00094.1
  • 57. Van Vuuren DP, Riahi K, Moss R et al (2012) A proposal for a new scenario framework to support research and assessment in different climate research communities. Global Environ Chang 22(1):21-35. https://doi.org/10.1016/j.gloenvcha.2011.08.002
  • 58. Vicente-Serrano SM, Begueria S, Lopez-Moreno JI (2011) Comment on “characteristics and trends in various forms of the palmer drought severity index (PDSI) during 1900-2008’’ by Aiguo Dai. J Geophys Res. https://doi.org/10.1029/2010JD015541
  • 59. Vondou DA, Guenang GM, Djiotang TLA et al (2021) Trends and interannual variability of extreme rainfall indices over Cameroon. Sustainability 13(12):6803. https://doi.org/10.3390/su13126803
  • 60. Wada IM, Usman HS, Nwankwegu AS et al (2023) Selection and downscaling of cmip6 climate models in northern Nigeria. Theor Appl Climatol. https://doi.org/10.1007/s00704-023-04534-w
  • 61. Walston JM, McAfee SA, McEvoy DJ (2023) Evaluating drought indices for Alaska. Earth Interact. https://doi.org/10.1175/ EI-D-22-0025.1
  • 62. Yin Y, Guo B, Zhong Y et al (2023) Can grace and cmip6 historical data identify groundwater drought in north China plain? Theor Appl Climatol 152(3-4):1203-1219. https://doi.org/10.1007/ s00704-023-04441-0
  • 63. Zhang Y, Wang P, Chen Y et al (2023) The optimal time-scale of standardized precipitation index for early identifying summer maize drought in the Huang-Huai-Hai region, China. J Hydrol Reg Stud 46(101):350. https://doi.org/10.1016/j.ejrh.2023.101350
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5baffa49-f0cf-43e9-93bd-0f06b2c137cc
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.