PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Graph Transformation Systems for Modeling Three Dimensional Finite Element Method. Part 2

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper we introduce formal definitions for several graph transformation systems modeling three dimensional h-adaptive Finite Element Method (3D h-FEM) algorithms with tetrahedral finite elements. We introduce a composite graph representation of the computational mesh and graph transformation rules expressing the mesh operations. In particular, there are graph transformation rules expressing the generation of the initial mesh consisting with tetrahedral finite elements, graph transformation rules expressing the construction of an elimination tree for interfacing with multi-frontal direct solver algorithm, graph transformation rules selecting sub-graph representing finite elements for further refinements, graph transformation rules responsible for execution of mesh refinements. We also discuss several benefits of using graph transformation system instead of classical FEM approach, including the benefits from the viewpoint of multi-frontal direct solvers.
Wydawca
Rocznik
Strony
173--203
Opis fizyczny
Bibliogr. 26 poz., rys.
Twórcy
autor
  • Faculty of Physics, Astronomy and Applied Computer Science Jagiellonian University Reymonta 4, 30-059, Kraków, Poland
  • Faculty of Physics, Astronomy and Applied Computer Science Jagiellonian University Reymonta 4, 30-059, Kraków, Poland
autor
  • Faculty of Physics, Astronomy and Applied Computer Science Jagiellonian University Reymonta 4, 30-059, Kraków, Poland
autor
  • Department of Computer Science Faculty of Computer Science, Electronics and Telecommunications AGH University of Science and Technology Al.Mickiewicza 30, 30-059, Kraków, Poland
  • Department of Computer Science Faculty of Computer Science, Electronics and Telecommunications AGH University of Science and Technology Al.Mickiewicza 30, 30-059, Kraków, Poland
Bibliografia
  • [1] Amestoy, P. R. Duff, I. S. L’Excellent, J.-Y.: Multifrontal parallel distributed symmetric and unsymmetric solvers. Computer Methods in Applied Mechanics and Engineering, 184(2) (2000) 501–500
  • [2] Amestoy, P. R. Duff, I. S. L’Excellent, J.-Y. Pralet S.: A fully asynchronous multifrontal solver using distributed dynamic scheduling, SIAM Journal on Matrix Analysis and Applications, 23(1) (2001) 15–41
  • [3] Amestoy, P. R. Guermouche, A. L’Excellent, J.-Y. Pralet S.: Hybrid scheduling for the parallel solution of linear systems, Parallel Computing 32(2) (2006) 136–156
  • [4] Babuška, I. Rheinboldt, W.: Error Estimates for Adaptive Finite Element Computations. SIAM Journal of Numerical Analysis, 15(4) (1978) 736–754
  • [5] Becker, R. Kapp, H. Rannacher, R.: Adaptive Finite Element Methods for Optimal Control of Partial Differential Equations: Basic Concept. SIAM Journal on Control and Optimisation, 39(1) (2000) 113–132
  • [6] Belytschko, T. Tabbar, M.: H-Adaptive finite element methods for dynamic problems, with emphasis on localization. International Journal for Numerical Methods in Engineering, 36(24) (1993) 4245–4265
  • [7] Bao, G. Hu, G. Liu, D.: An h-adaptive finite element solver for the calculations of the electronic structures. Journal of Computational Physics, 231(14) (2012) 4967–4979
  • [8] Demkowicz L., Kurtz J., Pardo D., Paszyński M., Rachowicz W., Zdunek A., Computing with hp-Adaptive Finite Elements, Vol. II. Frontiers: Three Dimensional Elliptic and Maxwell Problems with Applications, Chapman & Hall/Crc Applied Mathematics & Nonlinear Science (2007)
  • [9] Demkowicz, L. Gatto, P. Kurtz, J. Paszyński,M. Rachowicz,W. Bleszyński, E. Bleszyński,M., Hamilton,M. Champlin, C. Pardo, D.: Modeling of bone conduction of sound in the human head using hp-finite elements: Code design and verification, Computer Methods in Applied Mechanics and Engineering 200(21) (2011) 1757-1773
  • [10] Eriksson, K. Johnson, C.: Adaptive Finite Element Methods for Parabolic Problems I: A Linear Model Problem. SIAM Journal on Numerical Analysis, 28(1) (1991) 43–77
  • [11] Grabska E., Theoretical Concepts of Graphical Modeling. Part Two: CP-Graph Grammars and Languages. Machine Graphics and Vision 2, 2 (1993) 149-178
  • [12] Gurgul,P. Sieniek, M. Paszyński, M. Madej, L. Collier, N.: Two-dimensional HP-adaptive Algorithm for Continuous Approximations of Material Data Using Space Projection. Computer Science, 14(1) (2013) 97–112
  • [13] B. Irons, A frontal solution program for finite-element analysis. International Journal of Numerical Methods in Engineering 2 (1970) 5-32.
  • [14] Kyungjoo K.: Finite Element Modeling of Electromagnetic Radiation and Induced Heat Transfer in the Human Body, PhD. Thesis, The University of Texas in Austin (2013)
  • [15] MUlti-frontalMassivelly Parallel Sparse direct solver (MUMPS) http://graal.ens-lyon.fr/MUMPS/
  • [16] Nochetto, R. H. Siebert, K. G. Veeser, A.: Multiscale, Nonlinear and Adaptive Approximation. Springer, 2009, pp. 409–542
  • [17] Paszyński,M.: Minimizing the memory usage with parallel out-of-coremulti-frontal direct solver, Computer Assisted Methods in Engineering and Science 20(1) (2013) 15–41
  • [18] Plaszewski, P. Banaś, K. Paszyński,M.: Architecture of iterative solvers for hp-adaptive finite element codes, Computer Assisted Methods in Engineering and Science 20(1) (2013) 43-54
  • [19] Paszynska A., Grabska E., Paszynski M., A Graph Grammar Model of the hp Adaptive Three dimensional Finite Element Method, Part I. Fundamenta Informaticae 114(2) (2012) 149-182
  • [20] Paszynska A., Grabska E., Paszynski M., A Graph Grammar Model of the hp Adaptive Three dimensional Finite Element Method, Part II. Fundamenta Informaticae 114(2) (2012) 183-201
  • [21] Paszyński, M. Pardo, D. Calo, V. M.: A direct solver with reutilization of LU factorizations for h-adaptive finite element grids with point singularities, Computers and Mathematics with Applications, 65(8) (2013) 1140-1151
  • [22] Paszyński, M. Pardo, D. Paszyńska A.: Parallel multi-frontal solver for p adaptive finite element modeling of multi-physics computational problems, Journal of Computational Science 1(1) (2010) 48-54
  • [23] Paszyński, M. Pardo, D. Paszyńska, A. Demkowicz, L.: Out-of-core multi-frontal solver for multi-physics hp adaptive problems, Procedia Computer Science 4 (2011) 1788-1797
  • [24] Paszyński, M. Schaefer, R.: Graph grammar driven parallel partial differential equation solver, 22(9) (2010) 1063–1097
  • [25] Paszyński, M. Schaefer, R.: Reutilization of partial LU factorization for self-adaptive hp Finite Element Method. Lecture Notes in Computer Science, 5101 (2008) 965-974
  • [26] Sieniek, M. Paszyński M.: Subtree reuse in multi-frontal solvers for regular grids in Step-and-Flash Imprint Nanolithography modelling, Advanced EngineeringMaterials 16(2) (2014) 231-240.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5bab43e4-52be-4321-8c96-1a01acb42b47
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.