PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Spectral Analysis of MRI Sound Signal

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Magnetic Resonance Imaging (MRI) is a very versatile diagnostic tool for non-invasive analysis of human organ functions, without use of ionizing radiations. Loud operating sound is the major challenge associated with the MRI technology, reaching up to 130dB. This paper analyses and compares the spectral properties of acoustic noise produced in the examination room of the mobile imaging trailer based 1.5 Tesla MRI system, during different scanning sequences of image acquisition. The analysis is useful in understanding the dynamic behavior of the sound generated inside the examination room to develop the noise reduction strategy.
Twórcy
Bibliografia
  • [1] F. Bruno, F. Arrigoni, S. Mariani, et al., “Advanced magnetic resonance imaging (MRI) of soft tissue tumors: techniques and applications,” Radiol med 124, 243-252, 2019. https://doi.org/10.1007/s11547-019-01035-7.
  • [2] R. Reda, A. Zanza, A. Mazzoni, A. Cicconetti, L. Testarelli, D. Di Nardo, “An update of the possible applications of magnetic resonance imaging (MRI) in dentistry: a literature review,” Journal of imaging, vol-7(5), pp. 75. Apr. 2021. https://doi.org/10.3390/jimaging7050075.
  • [3] L. Landini, L. T. Mainardi, V. Positano, A. A. Young, M. Santarelli, L. Ying, W. E. Kyriakos, A. J. den Dekker, M. Styner, Y. O. Halchenko, A. Frangi, “Advanced image processing in magnetic resonance imaging,” CRC press, Oct. 3, 2018. https://doi.org/10.1201/9781420028669.
  • [4] M. J. Nyrhinen, V. H. Souza, R. J. Ilmoniemi, F. H. Lin, “Acoustic noise generated by TMS in typical environment and inside an MRI scanner,” Brain Stimulation, 17(2), pp. 184-193, Feb. 9, 2024. https://doi.org/10.1016/j.brs.2024.02.006.
  • [5] L. Shtrepi, V. Poggetto, C. Durochat, M. Dubois, D. Bendahan, F. Nistri, M. Miniaci, N. M. Pugno, F. Bosia, “Acoustic noise levels and field distribution in 7 T MRI scanners,” Frontiers in Physics,11, 14 Nov. 2023. https://doi.org/10.3389/fphy.2023.1284659.
  • [6] P. Mansfield, P.M. Glover, J. Beaumont, “Sound generation in gradient coil structures for MRI,” Magn Reson Med, vol. 39, issue 4, pp. 539-550, Apr. 1998. https://doi.org/10.1002/mrm.1910390406.
  • [7] J.M. Jackson, “Pro-active acoustic noise reduction for magnetic resonance imaging scanners,” PhD thesis, University of Tasmania, 2012. https://doi.org/10.25959/23204969.v1.
  • [8] J.R. Foster, D.A. Hall, A.Q. Summerfield, A.R. Palmer, R.W. Bowtell, “Sound‐level measurements and calculations of safe noise dosage during EPI at 3 T,” J Magn Reson Imaging, 12(1), pp. 157‐163. https://doi.org/10.1002/1522-2586(200007)12:1<157::AID-JMRI17>3.0.CO;2-M.
  • [9] A. Moelker, P.M.T. Pattynama, “Acoustic noise concerns in functional magnetic resonance imaging,” Hum. Brain Mapping, 20(3), pp. 123-141, 2003. https://doi.org/10.1002/hbm.10134.
  • [10] J. Hutter, A.N. Price, L. Cordero-Grande, “Quiet echo planar imaging for functional and diffusion MRI,” Magn ResonMed, 79(3), pp. 1447-1459, 2018. https://doi.org/10.1002/mrm.26810.
  • [11] R.A. Hedeen, W.A. Edelstein, “Characterization and prediction of gradient acoustic noise in MR imagers,” Magn Reson Med, 37, pp. 7-10, 1997. https://doi.org/10.1002/mrm.1910370103.
  • [12] S.A. Counter, A. Olofsson, H.F. Grahn, & E. Borg, “MRI acoustic noise: sound pressure and frequency analysis,” J Magn Reson Imaging, 7(3), pp. 606-611, 1997. https://doi.org/10.1002/jmri.1880070327.
  • [13] R.E. Brummett, J.M. Talbot, P. Charuhas, “Potential hearing loss resulting from MR imaging,” Radiology, 169(2), pp. 539‐ 540, Nov. 1988. https://doi.org/10.1148/radiology.169.2.3175004.
  • [14] G. Pellegrino, A.L. Schuler, G. Arcara, G. Di Pino, F. Piccione & E. Kobayashi, “Resting state network connectivity is attenuated by fMRI acoustic noise,” Neuroimage, 247, pp. 118791, Feb. 2022. https://doi.org/10.1016/j.neuroimage.2021.118791.
  • [15] D. Tomasi, E.C. Caparelli, L. Chang & T. Ernst, “fMRI-acoustic noise alters brain activation during working memory tasks,” Neuroimage, 27(2), pp. 377-38, 2005. https://doi.org/10.1016/j.neuroimage.2005.04.010.
  • [16] T. Wolak. K. Cieśla, M. Rusiniak, A. Piłka, M. Lewandowska, A. Pluta, H Skarżyński, P.H. Skarżyński, “Influence of acoustic overstimulation on the central auditory system: An functional magnetic resonance imaging (fmri) study,” Medical Science Monitor: International Medical Journal of Experimental and Clinical Research, 22, pp. 4623, 2016. https://doi.org/10.12659%2FMSM.897929.
  • [17] M.J. McJury, “Acoustic Noise and Magnetic Resonance Imaging: A Narrative/Descriptive Review,” J Magn Reson Imaging, 55, pp. 337-346, Feb. 2022. https://doi.org/10.1002/jmri.27525.
  • [18] E. Kanal, F.G. Shellock, “Policies, guidelines, and recommendations for MR imaging safety and patient management,” J Magn Reson Imaging, 2, pp.247-248, 1992. https://doi.org/10.1002/jmri.1880020222.
  • [19] Y. Wang, P. Xu, J. Zeng, J. Zhang, Y. Zhu, S. Che, C. Yao, Y. Ge, C. Wang, “Sequence optimization for MRI acoustic noise reduction,” In Journal of Physics: Conference Series, IOP Publishing, vol. 2591, no. 1, pp. 012034, Sept. 2023. DOI 10.1088/1742-6596/2591/1/012034.
  • [20] F. Hennel, “Fast spin echo and fast gradient echo MRI with low acoustic noise,” J Magn Reson Imaging,13(6), pp. 960-966, 2001. https://doi.org/10.1002/jmri.1138.
  • [21] M.H. AlMeer, “MRI Acoustic Noise cancellation using CNN,” Journal of Engineering Research, 2022. https://doi.org/10.36909/jer.17661.
  • [22] M. Li, B. Rudd, T.C. Lim, J.H. Lee, “In situ active control of noise in a 4T MRI scanner,” J Magn Reson Imaging, 34, pp. 662-669, Jul. 2011. https://doi.org/10.1002/jmri.22694.
  • [23] N. Lee, Y. Park & G.W. Lee, “Frequency-domain active noise control for magnetic resonance imaging acoustic noise,” Applied Acoustics, 118, pp. 30-38, 2017. https://doi.org/10.1016/j.apacoust.2016.11.003.
  • [24] A. Lasota & M. Meller, “Iterative learning approach to active noise control of highly autocorrelated signals with applications to machinery noise,” IET Signal Processing, 14(8), pp. 560-568, 2020. https://doi.org/10.1049/iet-spr.2020.0064.
  • [25] G. Z. Yao, C. K. Mechefske, B. K. Rutt, “Acoustic noise simulation and measurement of a gradient insert in a 4 T MRI,” Applied Acoustics, 66(8), pp. 957-73, Aug. 2005. https://doi.org/10.1016/j.apacoust.2004.11.006.
  • [26] T. Hamaguchi, T. Miyati, N. Ohno, T. Matsushita, T. Takata, Y. Matsuura, S. Kobayashi, T. Gabata, “Spatial analysis of acoustic noise transfer function with a human-body phantom in a clinical MRI scanner,” Acta Radiologica, 64(3), pp. 1212-1221, Mar. 2023. https://doi.org/10.1177/02841851221100079.
  • [27] J. Wang, H. Liu, C. Zheng & X. Li, “Spectral subtraction based on two-stage spectral estimation and modified cepstrum thresholding,” Applied acoustics, vol. 74, issue. 3, pp. 450-458, 2013. https://doi.org/10.1016/j.apacoust.2012.09.004.
  • [28] J. Přibil, A. Přibilová, & I. Frollo, “Vibration and noise in magnetic resonance imaging of the vocal tract: Differences between whole-body and open-air devices,” Sensors, 18(4), pp. 1112, Apr. 2018. https://doi.org/10.3390/s18041112.
  • [29] H. Guo, W. Chen, Y. Wang, F. Ma, P. Sun, T. Yuan, T, & X. Xie, “Parametric modeling and deep learning-based forward and inverse design for acoustic metamaterial plates,” Mechanics of Advanced Materials and Structures, pp. 1-11, Mar. 2024. https://doi.org/10.1080/15376494.2024.2330488.
  • [30] B. Assouar; M. Oudich; X. Zhou, “Acoustic metamaterials for sound mitigation,” Comptes Rendus. Physique, vol. 17, no. 5, pp. 524-532, 2017. https://doi.org/10.1016/j.crhy.2016.02.002.
  • [31] M. Ghassabi, F. Motaharifar, R. Talebitooti, “Improving soundproof characteristics of an FG-CNT-reinforced composite structure by adding a coating magneto-electro-elastic layer,” Journal of Vibration and Control, vol.30(7-8), pp. 1802-1817, Apr. 27 2024. https://doi.org/10.1177/10775463231171671.
  • [32] M. Ghafouri, M. Ghassabi, M. R. Zarastvand, & R. Talebitooti, “Sound propagation of three-dimensional sandwich panels: influence of three-dimensional Re-entrant auxetic core,” AIAA Journal, vol. 60, no. 11, pp. 6374-6384, Nov. 2022. https://doi.org/10.2514/1.J061219.
  • [33] Y. S. Tsay, J. Y. Lin, F. Ma, “Development of a panel membrane resonant absorber,” Applied Sciences, vol.11, no. 4, pp. 1893, Feb. 21 2021. https://doi.org/10.3390/app11041893.
  • [34] X. Shao, X. Yan, “Sound absorption properties of nanofiber membrane-based multi-layer composites,” Applied Acoustics, 200, pp. 109029, Nov. 2022. https://doi.org/10.1016/j.apacoust.2022.109029.
  • [35] I. Davis, A. McKay, G. J. Bennett, “A graph-theory approach to optimisation of an acoustic absorber targeting a specific noise spectrum that approaches the causal optimum minimum depth,” Journal of Sound and Vibration, vol. 505, pp.116135, Aug. 2021. https://doi.org/10.1016/j.jsv.2021.116135.
  • [36] K. Meena, K. Soni, G. Moona, M. Singh, “Investigations on Sound Absorption Properties of Perforated Designed Panels for the Selective Frequency Absorption,” in International Conference On" Advances In Metrology", Singapore: Springer Nature Singapore, pp. 85-94, Aug 2022. https://doi.org/10.1007/978-981-99-4594-8_9.
  • [37] C. Yu, X. Chen, M. Duan, M. Li, X. Wang, Y. Mao, L. Zhao, F. Xin, T. J. Lu, “Adjustable sound absorbing metastructures for low-frequency variable discrete sources,” International Journal of Mechanical Sciences. vol. 267, pp. 108965, Apr. 2024. https://doi.org/10.1016/j.ijmecsci.2024.108965.
Uwagi
1. Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
2. This work was supported by the Faculty of Mechanical Engineering and Robotics, Department of Mechanics and Vibroacoustics, AGH University of Science and Technology, Al. Adama Mickiewicza 30, 30 - 059 Kraków, Poland from the finance source: 16.16.130.942.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5bab0fb6-ece4-4743-b718-627e785d0bee
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.