PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A finite element model of the L4-L5-S1 human spine segment including the heterogeneity and anisotropy of the discs

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
With the aim to study disc degeneration and the risk of injury during occupational activities, a new finite element (FE) model of the L4-L5-S1 segment of the human spine was developed based on the anthropometry of a typical Colombian worker. Beginning with medical images, the programs CATIA and SOLIDWORKS were used to generate and assemble the vertebrae and create the soft structures of the segment. The software ABAQUS was used to run the analyses, which included a detailed model calibration using the experimental step-wise reduction data for the L4-L5 component, while the L5-S1 segment was calibrated in the intact condition. The range of motion curves, the intradiscal pressure and the lateral bulging under pure moments were considered for the calibration. As opposed to other FE models that include the L5-S1 disc, the model developed in this study considered the regional variations and anisotropy of the annulus as well as a realistic description of the nucleus geometry, which allowed an improved representation of experimental data during the validation process. Hence, the model can be used to analyze the stress and strain distributions in the L4-L5 and L5-S1 discs of workers performing activities such as lifting and carrying tasks.
Rocznik
Strony
15--24
Opis fizyczny
Bibliogr. 29 poz., rys., tab., wykr.
Twórcy
autor
  • Universidad del Valle, Cali-Colombia
  • Universidad Autonoma de Occidente, Cali-Colombia
autor
  • Universidad del Valle, Cali-Colombia
  • Universidad Libre, Cali-Colombia
autor
  • Universidad del Valle, Cali-Colombia
Bibliografia
  • [1] ADAMS M.A., MCNALLY D.S., DOLAN P., “stress” Distributions Inside Intervertebral Discs the Effects of Age and Degeneration, J. Bone Joint. Surg. Br., 1996, 78-B, 965– 972.
  • [2] AYTURK U.M., GARCIA J.J., PUTTLITZ C.M., The Micromechanical Role of the Annulus Fibrosus Components Under Physiological Loading of the Lumbar Spine, J. Biomech. Eng., 2010, 132, 061007–061007.
  • [3] BELLINI C.M., GALBUSERA F., RAIMONDI M.T., MINEO G.V., BRAYDA-BRUNO M., Biomechanics of the lumbar spine after dynamic stabilization, J. Spinal Disord. Tech., 2007, 20, 423–429.
  • [4] BOGDUK N., Clinical Anatomy of the Lumbar Spine & Sacrum, 1995.
  • [5] CORTES D.H., HAN W.M., SMITH L.J., ELLIOTT D.M., Mechanical properties of the extra-fibrillar matrix of human annulus fibrosus are location and age dependent, J. Orthop. Res., 2013, 31(11), 1725–1732.
  • [6] DIAZ C.A., GARCÍA J.J., PUTTLITZ C., Influence of vertebra stiffness in the finite element analysis of the intervertebral disc, ASME, Fajarado, Puerto Rico, USA, 2012, 2.
  • [7] EZQUERRO F., SIMÓN A., PRADO M., PÉREZ A., Combination of finite element modeling and optimization for the study of lumbar spine biomechanics considering the 3D thorax–pelvis orientation, Med. Eng. Phys., 2004, 26, 11–22.
  • [8] EZQUERRO F., VACAS F.G., POSTIGO S., PRADO M., SIMÓN A., Calibration of the finite element model of a lumbar functional spinal unit using an optimization technique based on differential evolution, Med. Eng. Phys., 2011, 33, 89–95.
  • [9] EZQUERRO JUANCO F., SIMÓN MATA A., MELLADO ARJONA E., VILLANUEVA PAREJA F., Modelo de elementos finitos de la columna lumbar, Biomecánica. 1999, VII, 46–52.
  • [10] GUAN Y., YOGANANDAN N., MOORE J., PINTAR F.A., ZHANG J., MAIMAN D.J. et al., Moment–rotation responses of the human lumbosacral spinal column, J. Biomech., 2007, 40, 1975–1980.
  • [11] GUAN Y., YOGANANDAN N., ZHANG J., PINTAR F.A., CUSICK J.F., WOLFLA C.E. et al., Validation of a clinical finite element model of the human lumbosacral spine, Med. Bio. Eng. Comput., 2006, 44, 633–641.
  • [12] HEUER F., SCHMIDT H., L. CLAES, WILKE H.-J., Stepwise reduction of functional spinal structures increase vertebral translation and intradiscal pressure, J. Biomech., 2007, 40, 795–803.
  • [13] HEUER F., SCHMIDT H., KLEZL Z., CLAES L., WILKE H.-J., Stepwise reduction of functional spinal structures increase range of motion and change lordosis angle, J. Biomech., 2007, 40, 271–280.
  • [14] HEUER F., SCHMIDT H., WILKE H.-J., Stepwise reduction of functional spinal structures increase disc bulge and surface strains, J. Biomech., 2008, 41, 1953–1960.
  • [15] JARAMILLO H.E., GARCÍA A., GÓMEZ L., ESCOBAR W., GARCÍA J.J., Procedimiento para generar mallas de elementos finitos de la columna vertebral humana a partir de imágenes médicas, Revista el Hombre y la Máquina, 2012, 40, 79–86.
  • [16] MEIJER G.J.M., HOMMINGA J., HEKMAN E.E.G., VELDHUIZEN A.G., VERKERKE G.J., The effect of three-dimensional geometrical changes during adolescent growth on the biomechanics of a spinal motion segment, J. Biomech., 2010, 43, 1590–1597.
  • [17] MORAMARCO V., PÉREZ DEL PALOMAR A., PAPPALETTERE C., DOBLARÉ M., An accurate validation of a computational model of a human lumbosacral segment, J. Biomech., 2010, 43, 334–342.
  • [18] NOAILLY J., WILKE H.-J., PLANELL J.A., LACROIX D., How does the geometry affect the internal biomechanics of a lumbar spine bi-segment finite element model? Consequences on the validation process, J. Biomech., 2007, 40, 2414–2425.
  • [19] NOAILLY J., Model Developments for In Silico Studies of the Lumbar Spine Biomechanics, Universidad Politecnica de Cataluña, Universidad Politecnica de Cataluña, España, 2009.
  • [20] O’CONNELL G.D., GUERIN H.L., ELLIOTT D.M., Theoretical and Uniaxial Experimental Evaluation of Human Annulus Fibrosus Degeneration, J. Biomech. Eng., 2009, 131, 111007.
  • [21] PANJABI M.M., OXLAND T.R., YAMAMOTO I., CRISCO J.J., Mechanical behavior of the human lumbar and lumbosacral spine as shown by three-dimensional load-displacement curves, J. Bone Joint. Surg., Series A, 1994, 76, 413–424.
  • [22] SCHMIDT H., HEUER F., SIMON U., KETTLER A., ROHLMANN A., CLAES L. et al., Application of a new calibration method for a three-dimensional finite element model of a human lumbar annulus fibrosus, Clin. Biomech., 2006, 21, 337– 344.
  • [23] Seguro Social, Parámetros antropométricos de la población laboral Colombiana – 1995 Acopla 95, Seguro Social, Bogotá, 2002.
  • [24] TYNDYK M.A., BARRON V., MCHUGH P.E., O’MAHONEY D., Generation of a finite element model of the thoracolumbar spine, Acta Bioeng. Biomech., 2007, 9, 35–46.
  • [25] WANG J.L., PARNIANPOUR M., SHIRAZI-ADL A., ENGIN A.E., LI S., PATWARDHAN A., Development and validation of a viscoelastic finite element model of an L2/L3 motion segment, Theor. Appl. Fract. Mec., 1997, 28, 81–93.
  • [26] WEISSE B., AIYANGAR A.K., AFFOLTER C., GANDER R., TERRASI G.P., PLOEG H., Determination of the translational and rotational stiffnesses of an L4-L5 functional spinal unit using a specimen-specific finite element model, J. Mech. Behav. Biomed. Mater, 2012, 13, 45–61.
  • [27] WILKE H.-J., NEEF P., CAIMI M., HOOGLAND T., CLAES L.E., New in vivo measurements of pressures in the intervertebral disc in daily life, Spine, 1999, 24, 755–762.
  • [28] WOLDTVEDT D.J., WOMACK W., GADOMSKI B.C., SCHULDT D., PUTTLITZ C.M., Finite element lumbar spine facet contact parameter predictions are affected by the cartilage thickness distribution and initial joint gap size, J. Biomech. Eng., 2011, 133(6), 061009
  • [29] YOGANANDAN N., MYKLEBUST J.B., RAY G., PINTAR F., SANCES A., A non-linear finite element model of a spinal segment, Mathematical Modelling, 1987, 8, 617–622.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5b9f437c-0395-4c03-95a3-db7722f12e80
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.