PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Monotonic properties of Kneser solutions of second order linear differential equations with delayed argument

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper new monotonic properties of nonoscillatory solutions for second order linear functional differential equations with delayed argument y′′(t) = p(t)y(τ (t)) have been established. New properties are used to introduce criteria for elimination of bounded nonoscillatory solutions for studied equations.
Rocznik
Strony
27--38
Opis fizyczny
Bibliogr. 22 poz.
Twórcy
  • Technical University of Košice, Faculty of Electrical Engineering and Informatics, Department of Mathematics, Letná 9, 042 00 Košice, Slovakia
Bibliografia
  • [1] R.P. Agarwal, S.R. Grace, D. O’Regan, Oscillation Theory for Second Order Linear, Half-linear, Superlinear and Sublinear Dynamic Equations, Kluver Academic Publishers, Dordrecht 2002.
  • [2] R.P. Agarwal, C.H. Zhang, T. Li, Some remarks on oscillation of second order neutral differential equations, Appl. Math. Comput. 274 (2016), 178–181.
  • [3] B. Baculíková, Oscillation of second-order nonlinear noncanonical differential equations with deviating argument, Appl. Math. Lett. 91 (2019), 68–75.
  • [4] B. Baculíková, Oscillatory behavior of the second order noncanonical differential equation, Electron. J. Qual. Theory Differ. Equ. 89 (2019), 1–17.
  • [5] B. Baculíková, Oscillation and asymptotic properties of second order half-linear differential equations with mixed deviating arguments, Mathematics 9 (2021), 1–12.
  • [6] B. Baculíková, J. Džurina, Asymptotic properties of even-order functional differential equations with deviating argument, Carpathian J. Math. 40 (2024), 15–23.
  • [7] M. Bohner, S.R. Grace, I. Jadlovská, Oscillation criteria for second-order neutral delay differential equations, Electron. J. Qual. Theory Differ. Equ. 60 (2017), 1–12.
  • [8] G. Chatzarakis, I. Jadlovská, Improved oscillation results for second-order half-linear delay differential equations, Hacet. J. Math. Stat. 48, (2019).
  • [9] J. Džurina, Oscillation of second-order trinomial differential equations with retarded and advanced arguments, Appl. Math. Lett. 153 (2024), 1–8.
  • [10] I. Jadlovska, Oscillation criteria of Kneser-type for second-order half-linear advanced differential equations, Appl. Math. Lett. 106 (2020), 1–8.
  • [11] I. Jadlovská, J. Džurina, Kneser-type oscillation criteria for second-order half-linear delay differential equations, Appl. Math. Comput. 380, (2020), 1–15.
  • [12] I.T. Kiguradze, T.A. Chanturia, Asymptotic Properties of Solutions of Nonatunomous Ordinary Differential Equations, Kluwer Acad. Publ., Dordrecht, 1993.
  • [13] R. Koplatadze, T.A. Chanturia, On Oscillatory Properties of Differential Equations with Deviating Arguments, Tbilisi Univ. Press, Tbilisi, 1977.
  • [14] R. Koplatadze, G. Kvinkadze, I.P. Stavroulakis, Properties A and B of n-th order linear differential equations with deviating argument, Georgian Math. J. 6 (1999), 553–566.
  • [15] T. Kusano, On even order functional differential equations with advanced and retarded arguments, J. Differential Equations 45 (1982), 75–84.
  • [16] T. Kusano, Oscillation of even order linear functional differential equations with deviating arguments of mixed type, J. Math. Anal. Appl. 98 (1984), 341–347.
  • [17] T. Kusano, B.S. Lalli, On oscillation of half-linear functional differential equations with deviating arguments, Hiroshima Math. J. 24 (1994), 549–563.
  • [18] G. Laddas, V. Lakshmikantham, J.S. Papadakis, B.G. Zhang, Oscillation of higher-order retarded differential equations generated by retarded argument, Delay and Functional Differential Equations and Their Applications, Academic Press, New York, 1972, 219–231.
  • [19] T. Li, Y. Rogovchenko, Oscillation of second-order neutral differential equations, Math. Nachr. 288 (2015), 1150–1162.
  • [20] M. Naito, Oscillation Criteria for Second Order Ordinary Differential Equations, Canad. Math. Bull. 63 (2020), 276–286.
  • [21] S. Tamilvanan, E. Thandapani, J. Džurina, Oscillation of second order nonlinear differential equation with sub-linear neutral term, Differ. Equ. Appl. 9 (2017), 1–7.
  • [22] Y.Wu, Y. Yu, J. Xiao, Oscillation of second order nonlinear neutral differential equations, Mathematics 10 (2022), 1–12.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5b9ec50e-6509-4513-ae6c-30af25c239a3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.