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Abstract. In this paper new monotonic properties of nonoscillatory solutions for
second order linear functional differential equations with delayed argument

y′′(t) = p(t)y(τ(t))

have been established. New properties are used to introduce criteria for elimination
of bounded nonoscillatory solutions for studied equations.
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1. INTRODUCTION

We consider the linear functional differential equation with delayed argument

y′′(t) = p(t)y(τ(t)). (E)

In this paper it is assumed that

(H1) p(t) ∈ C([t0, ∞)), p(t) > 0,
(H2) τ(t) ∈ C1([t0, ∞)), τ(t) < t, τ ′(t) > 0, lim

t→∞
τ(t) = ∞.

By a proper solution of Eq. (E) we mean a function y : [t0, ∞) → (−∞, ∞)
which satisfies (E) for all sufficiently large t and sup{|y(t)| : t ≥ T} > 0 for all
T ≥ t0. We make the standing hypothesis that (E) does possess proper solutions.
The oscillatory character of the solutions is understood in the standard way, that is,
a proper solution is termed to be oscillatory or nonoscillatory according to whether it
does or does not have infinitely many zeros.
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If y(t) is a nonoscillatory solution of (E), then there exists a number ℓ ∈ {0, 2}
such that

y(t)y(i)(t) > 0 for 0 ≤ i ≤ ℓ,

(−1)iy(t)y(i)(t) > 0 for ℓ ≤ i ≤ 2.
(1.1)

Such y(t) is said to be a (nonoscillatory) solution of degree ℓ and the totality of solutions
of degree ℓ is denoted by Nℓ. If we denote the set of all nonoscillatory solutions of (E)
by N , then we have

N = N0 ∪ N2.

It is obvious that if y(t) is a solution of (E), then also −y(t) is the solution of (E) and
hence as usually we can restrict our attention only to positive nonoscillatory solutions
of considered equation. Solutions from the class N0 are called Kneser solutions.

There are numerous papers devoted to monotonic properties and oscillation of
second order differential equations, see e.g. [1–22] and the references included. We men-
tion some of them in detail.

Koplatadze and Chanturia [13] (written in Russian, and so we refer also to [15])
formulated the following result:

Theorem 1.1. If τ(t) ≤ t and

lim sup
t→∞

t∫

τ(t)

(s − τ(t))p(s) ds > 1, (1.2)

then N0 = ∅ for (E).

This result has been extended to more general differential equations. For example
Džurina in [9] generalized it to trinomial differential equations with retarded and
advanced arguments

y′′(t) = p(t)y(τ(t))) + g(t)y(σ(t)).

On the other hand, Kusano and Lali in [17] have shown that equation
(
|y′(t)|α−1y′(t)

)′ = p(t)|y(τ(t))|α−1y(τ(t)), α > 0

does not allow solutions of degree 0, i.e. N0 = ∅ if

lim sup
t→∞

t∫

τ(t)

(τ(t) − τ(s))αp(s) ds > 1.

A number of the authors focused on the development of similar techniques based
on the transformation of the nonlinear, neutral delay differential equations to the
first-order Riccati type equation or inequality, see, for instance [2, 19, 20, 22]. In [7]
authors present a comparison result in which the oscillation of second-order neutral
differential equations is deduced from that a first-order delay differential equation.
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The above mentioned results concern sublinear, superlinear, nonlinear, neutral
functional second-order differential equations, which is the current trend to study more
and more complicated differential equations. In this paper, we turn our attention to
simple linear differential equations and provide new criteria for such types of equations.

Our goal is to improve essentially the above mentioned criterion (1.2). The main
idea of the Koplatadze and Chanturia’s proof consists of the following estimates:

y(τ(t)) =
∞∫

τ(t)

(s − τ(t))p(s)y(τ(s)) ds

≥
t∫

τ(t)

(s − τ(t))p(s)y(τ(s)) ds

≥ y(τ(t))
t∫

τ(t)

(s − τ(t))p(s) ds.

(1.3)

So, there are two ways how to improve their result. The first one, Koplatadze and
Chanturia used the fact that y(t) is decreasing (see the third line of (1.3)). Our
progress in the present paper is in establishing a new monotonicity for y(t) in the form
that α(t)y(t) is decreasing for a suitable function α(t) such that α(t) → ∞ as t → ∞.

The second one, the information about function (s − τ(t))p(s)y(τ(s)) is lost on the
interval (t, ∞) (see the second line of (1.3)). We eliminate also this insufficiency by
establishing “the opposite” monotonicity of y(t) in the sense that β(t)y(t) is increasing
for certain function β(t).

Some new methods for asymptotic properties of (E) have been presented in
latest papers [6] and [9]. The comparison with obtained our criteria will be provided
in Example 2.9.

2. MAIN RESULTS

We are about to offer new monotonic properties of nonoscillatory solutions of degree 0
for equation (E).

To simplify our notation we employ the following functions:

P (t) =
τ−1(t)∫

t

p(s) ds,

α(t) = e

∫ t

t1
P (s) ds

,

(2.1)

where t1 ≥ t0 is arbitrary but fixed constant.
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Lemma 2.1. Let y(t) be a positive solution of degree 0 for equation (E). Then

α(t)y(t) is decreasing function (2.2)

for t ≥ t1.
Proof. It is easy to see that for considered solution y(t) we have y′(t) < 0 and y′′(t) > 0.
Then, in view of (2.1), an integration of (E) from t to ∞ yields

−y′(t) ≥
∞∫

t

p(s)y(τ(s)) ds ≥
τ−1(t)∫

t

p(s)y(τ(s)) ds ≥ y(t)P (t)

which is equivalent to
y′(t) + P (t)y(t) ≤ 0.

Using standard methods of calculus it is easy to verify that for any t1 ≥ t0
[
y(t)e

∫ t

t1
P (s) ds

]′
= [y(t)α(t)]′ ≤ 0,

and we conclude that y(t)α(t) is decreasing function.

Our first improvement of Theorem 1.1 is based on the established monotonicity.
Theorem 2.2. If

lim sup
t→∞


α(τ(t))

t∫

τ(t)

p(s)
α(τ(s)) (s − τ(t)) ds


 > 1, (2.3)

then N0 = ∅ for (E).
Proof. Assume on the contrary that y(t) is a positive solution of degree 0 of equa-
tion (E). Integrating (E) twice from u to t and changing the order of integration,
we obtain

y(u) ≥
t∫

u

p(s)y(τ(s))(s − u) ds.

Employing the fact that y(t)α(t) is decreasing function, we get

y(u) ≥ y(τ(t))α(τ(t))
t∫

u

p(s)
α(τ(s)) (s − u) ds

which for u = τ(t) provides

1 ≥ α(τ(t))
t∫

τ(t)

p(s)
α(τ(s)) (s − τ(t)) ds.

This contradicts (2.3) and the proof is complete.
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It is easy to see that Theorem 2.2 upgrades classical Theorem 1.1. We illustrate
this fact with the Euler differential equation.
Example 2.3. Consider the second order delay differential equation

y′′(t) = p0
t2 y(λt), (E1)

where p0 > 0 and λ ∈ (0, 1). By Theorem 1.1 of [13], equation (E1) for λ = 0.5 has
not nonoscillatory solutions from the class N0 provided that p0 > 5.177. On the other
hand, it is easy to verify that

P (t) = p0
t

(1 − λ)

and if we choose t1 = 1, then

α(t) = tα0 , where α0 = p0(1 − λ).

Therefore, condition (2.3) reduces to

p0

[
λ−α0 − 1

α0
+ λ − λ−α0

1 + α0

]
> 1

which for λ = 0.5 takes the form p0 > 3.32, and this by Theorem 2.2 guarantees that
N0 = ∅ for (E1). The progress is obvious.

For the next improvement we need to establish the opposite monotonicity for y(t).
It is easy to see that (H2) guaranties the existence of the inverse function τ−1(t)

and therefore the auxiliary function ξ(t) ∈ C1([t0, ∞))

ξ(ξ(t)) = τ−1(t) (2.4)

is well-defined. To simplify our notation we employ the following auxiliary functions:

P1(t) = α(τ(ξ(t)))
ξ(t)∫

t

s − t

α(τ(s))p(s) ds,

P2(t) = α(t)
τ−1(t)∫

ξ(t)

s − t

α(τ(s))p(s) ds,

P3(t) = α(ξ(t))
τ−1(ξ(t))∫

τ−1(t)

s − t

α(τ(s))p(s) ds,

P ∗
1 (t) = P1(t)

1 − P2(t) ,

P ∗
3 (t) = P3(t)

1 − P2(t) .

(2.5)
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Lemma 2.4. Assume that there exists a function ξ(t) ∈ C1([t0, ∞)) satisfying (2.4)
and y(t) is a positive solution of degree 0 of (E), then

y(τ(t)) ≤ 1 − P ∗
3 (ξ−1(t))P ∗

1 (t) − P ∗
1 (ξ(t))P ∗

3 (t)
P ∗

1 (t)P ∗
1 (ξ−1(t)) y(t). (2.6)

Proof. Assume that y(t) ∈ N0 is a positive solution of equation (E). Integrating (E)
twice from t to ∞ and changing the order of integration, we are led to

y(t) ≥
∞∫

t

p(s)y(τ(s))(s − t) ds.

Employing auxiliary function ξ(t), we have

y(t) ≥
ξ(t)∫

t

p(s)y(τ(s))(s − t) ds +
τ−1(t)∫

ξ(t)

p(s)y(τ(s))(s − t) ds

+
τ−1(ξ(t))∫

τ−1(t)

p(s)y(τ(s))(s − t) ds

(2.7)

which in view of (2.2) and (2.5) implies that

y(t) ≥ y(τ(ξ(t)))P1(t) + y(t)P2(t) + y(ξ(t))P3(t).

Thus, for P2(t) < 1, we obtain

y(t) ≥ y(ξ−1(t))P ∗
1 (t) + y(ξ(t))P ∗

3 (t). (2.8)

Therefore,
y(ξ−1(t)) ≥ y(τ(t))P ∗

1 (ξ−1(t)) + y(t)P ∗
3 (ξ−1(t)) (2.9)

and
y(ξ(t)) ≥ y(t)P ∗

1 (ξ(t)) + y(τ−1(t))P ∗
3 (ξ(t)). (2.10)

Setting (2.9) and (2.10) into (2.8), one gets

y(t) ≥
[
P ∗

1 (t)P ∗
1 (ξ−1(t))

]
y(τ(t))

+
[
P ∗

3 (ξ−1(t))P ∗
1 (t) + P ∗

1 (ξ(t))P ∗
3 (t)

]
y(t).

(2.11)

Finally, we have

y(τ(t)) ≤ 1 − P ∗
3 (ξ−1(t))P ∗

1 (t) − P ∗
1 (ξ(t))P ∗

3 (t)
P ∗

1 (t)P ∗
1 (ξ−1(t)) y(t).

The proof is complete.



Monotonic properties of Kneser solutions of second order linear differential equations. . . 33

In what follows, we shall assume that there exist positive constants P ∗
i , i = 1, 3,

such that

P ∗
i (t) ≥ P ∗

i . (2.12)

The following criteria immediately result from the proof of Lemma 2.4.

Corollary 2.5. If lim sup
t→∞

P2(t) > 1, then N0 = ∅.

Corollary 2.6. Let (2.12) hold and there exist a function ξ(t) ∈ C1([t0, ∞)) satisfy-
ing (2.4). Assume that y(t) ∈ N0 is a positive solution of (E). Then

y(τ(t)) ≤ 1 − 2P ∗
3 P ∗

1
(P ∗

1 )2 y(t). (2.13)

Now, we are prepared to provide the opposite monotonicity for y(t) ∈ N0. We set
a couple of auxiliary functions:

Q(t) = 1 − 2P ∗
3 P ∗

1
(P ∗

1 )2 α(t)
∞∫

t

p(s)
α(s) ds,

β(t) = e

∫ t

t1
Q(s) ds

,

(2.14)

where t1 ≥ t0 is arbitrary constant and the improper integral is assumed to be
convergent.

Lemma 2.7. Let (2.12) hold and there exist a function ξ(t) ∈ C1([t0, ∞)) satisfy-
ing (2.4) and y(t) be a positive solution of degree 0 of (E). Then

β(t)y(t) is an increasing function (2.15)

for t ≥ t1.

Proof. Assume that y(t) ∈ N0 is a positive solution of (E). Integrating (E) from t
to ∞, in view of (2.13) and (2.2) we get

−y′(t) =
∞∫

t

p(s)y(τ(s)) ds ≤
∞∫

t

1 − 2P ∗
3 P ∗

1
(P ∗

1 )2 p(s)y(s) ds ≤ y(t)Q(t).

But the inequality y′(t) + y(t)Q(t) ≥ 0 implies that y(t)β(t) is an increasing function.
The proof is complete.
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Now, we present the final improvement of Theorems 1.1 and 2.2.

Theorem 2.8. Let (2.12) hold and there exist a function ξ(t) ∈ C1([t0, ∞)) satisfy-
ing (2.4). If

lim sup
t→∞

[
α(τ(t))

t∫

τ(t)

p(s)(s − τ(t))
α(τ(s)) ds

+ β(τ(t))
∞∫

t

p(s)(s − τ(t))
β(τ(s)) ds

]
> 1,

(2.16)

then N0 = ∅ for (E).

Proof. Assume on the contrary that y(t) ∈ N0 is a positive solution of (E). Integrat-
ing (E) twice from t to ∞ and changing the order of integration, we get

y(t) ≥
∞∫

t

p(s)y(τ(s))(s − t) ds.

Using the fact that y(t)α(t) is a decreasing function and y(t)β(t) is increasing,
we see that

y(τ(t)) ≥
t∫

τ(t)

p(s)y(τ(s))(s − τ(t)) ds +
∞∫

t

p(s)y(τ(s))(s − τ(t)) ds

≥ y(τ(t))α(τ(t))
t∫

τ(t)

p(s)(s − τ(t))
α(τ(s)) ds + y(τ(t))β(τ(t))

∞∫

t

p(s)(s − τ(t))
β(τ(s)) ds

which contradicts (2.16) and the proof is finished.

By comparing (2.3) and (2.16) we see that main goal of the paper has been achieved
since the information about the function (s − τ(t))p(s)y(τ(s)) is saved also over the
interval (t, ∞). We support our progress with help of the several examples.

Example 2.9. Consider once more the differential equation

y′′(t) = p0
t2 y(λt), p0 > 0, λ ∈ (0, 1) (E1)
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It follows from Example 2.3 that α(t) = tα0 , where α0 = p0(1 − λ). It is easy to
verify that

P1(t) = p0λ− α0
2

(
1 − λ

α0
2

α0
+ λ

1+α0
2 − 1

1 + α0

)
,

P2(t) = p0λ− α0
2

(
1 − λ

α0
2

α0
+ λ

2+α0
2 − λ

1
2

1 + α0

)
,

P3(t) = p0λ− α0
2

(
1 − λ

α0
2

α0
+ λ

3+α0
2 − λ

1 + α0

)
.

Then
P ∗

1 = P1(t)
1 − P2(t) , P ∗

3 = P3(t)
1 − P2(t)

and
β(t) = tγ , where γ = p0

1 + α0

1 − 2P ∗
3 P ∗

1
(P ∗

1 )2 .

For (E1) condition (2.16) gives

p0

[
λ−α0 − 1

α0
+ λ − λ−α0

1 + α0

]
+ p0

[
1
γ

− λ

γ + 1

]
> 1. (2.17)

Consequently, for λ = 0.5 condition (2.17) simplifies to p0 > 2.56 which by Theorem 2.8
yields N0 = ∅ for (E1). On the other hand, Theorem 2.1 in [6] requires

Q2
1 + 2Q1Q3
(1 − Q2)2 > 1

with

Q1 = p0

(
ln 1√

λ
+

√
λ − 1

)
,

Q2 = p0

(
ln 1√

λ
+ λ −

√
λ

)
,

Q3 = p0

(
ln 1√

λ
+ λ

√
λ − λ

)

which is satisfies for p0 > 3.39. The progress is obvious.
Example 2.10. Consider the equation

y′′(t) = p0y(t − τ0), p0 > 0, τ0 > 0. (E2)

By Theorem 1.1, Eq. (E2) for τ0 = 0.5 has no nonoscillatory solution from the
class N0 provided that p0 > 8. On the other hand, condition (2.3) from Theorem 2.2
takes the form

−1 + ep0τ2
0

p0τ2
0

− 1
p0τ2

0
> 1.
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Now for τ0 = 0.5, we see that if p0 > 5.026, then N0 = ∅. Finally, to apply Theorem 2.8
we find out that

P1 = −1
2 − 1

p0τ2
0

+ e
p0τ2

0
2

p0τ2
0

,

P2 = −1 + e
p0τ2

0
2

2 + 1
p0τ2

0

(
e

p0τ2
0

2 − 1
)

,

P3 = −3
2 + e

p0τ2
0

2 + 1
p0τ2

0

(
e

p0τ2
0

2 − 1
)

.

Moreover,
P ∗

1 = P1(t)
1 − P2(t) , P ∗

3 = P3(t)
1 − P2(t)

and
β(t) = e

δt
τ0 , where δ = 1 − 2P ∗

3 P ∗
1

(P ∗
1 )2 .

Criterion (2.16) for (E2) takes the form

−1 + ep0τ2
0

p0τ2
0

− 1
p0τ2

0
+ p0τ2

0
δ

(
1 + 1

δ

)
> 1,

which for τ0 = 0.5 gives that if p0 > 3.872, then (E2) does not have nonoscillatory
solutions from the class N0. Again the progress is outstanding.

In this paper we presented a new technique for investigation of the second order
linear differential equation. We demonstrated the progress of our criteria on standardly
used equations (E1) and (E2). It remains an open problem to extend our technique to
higher order equations or eventually nonlinear equations and what to do if an improper
integral in (2.14) is divergent.
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