PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Recent Trends in Metal Forming: From Process Simulation and Microstructure Control In Classical Forming Processes to Hybrid Combinations Between Forming and Additive Manufacturing

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper describes some recent trends in metal forming such as isothermal forging of titanium aluminides and process combinations between metal forming and additive manufacturing. These trends rely on accurate process and material models for process design. Process and material models must hence be able to track the microstructure evolution in complex materials such as titanium aluminides as well as predict the microstructure evolution along process histories with multiple deformation and/or heat input steps. In models for such processes, JMAK-type kinetics for and phase transformation are still common. For processes involving deformation and heat, the accuracy, consistency and limits of JMAK-type models are discussed. It is shown that the consistency of DRX models as well as the stability of model predictions in multi-stage processes require further attention.
Rocznik
Strony
5--17
Opis fizyczny
Bibliogr. 24 poz., tab., rys.
Twórcy
autor
  • Brandenburg Technical University, Mechanical Design and Manufacturing, Cottbus-Senftenberg, Germany
Bibliografia
  • [1] CULLEN J.M, ALLWOOD J.M, BAMBACH M.D., 2012, Mapping the global flow of steel: from steelmaking to end-use goods, Environmental science & technology, 46/24, 13048-55.
  • [2] ALLWOOD JM, CULLEN JM, CARRUTH MA, COOPER D.R, MCBRIEN M., MILFORD R.L., et al., 2012, Sustainable Materials: with both eyes open, UIT Cambridge Limited.
  • [3] ALLISON J., COLLINS P., SPANOS G., eds., 2011, 1st World Congress on Integrated Computational Materials Engineering: ICME. Hoboken, NJ: John Wiley & Sons.
  • [4] BAMBACH M., SCHMITZ G.J., PRAHL U., 2013, ICME-A mere coupling of models or a discipline of its own?, 2 World Congress on Integrated Computational Materials Engineering, 285-90.
  • [5] HIRSCH J., KARHAUSEN K.F., 2011, History of ICME in the European aluminium industry. In: Allison J, Collins P., Spanos G., eds. 1st World Congress on Integrated Computational Materials Engineering: ICME, Hoboken, NJ: John Wiley & Sons, 203-210.
  • [6] APPEL F., WAGNER R., 1998, Microstructure and deformation of two-phase gamma-titanium aluminides, Materials science and engineering: r: reports, 22/5, 187-268.
  • [7] APPEL F., PAUL J.D.H., OEHRING M., 2011, Gamma titanium aluminide alloys: science and technology, John Wiley & Sons.
  • [8] KIM H.Y, SOHN W.H, HONG S.H., 1998, High temperature deformation of Ti(46-48)Al2W intermetallic compounds, Materials Science and Engineering, A, 251/1, 216-25.
  • [9] IMAYEV R.M., IMAYEV V.M., OEHRING M., APPEL F., 2005, Microstructural evolution during hot working of Ti aluminide alloys: Influence of phase constitution and initial casting texture, Metallurgical and Materials Transactions, A, 36/13, 859-67.
  • [10] CHENG L., XUE X., TANG B., KOU H., LI J., 2014, Flow characteristics and constitutive modeling for elevated temperature deformation of a high Nb containing TiAl alloy, Intermetallics, 49, 23-8.
  • [11] APELIAN D,. 2008,: A “model” for the future?, Integrated Computational Materials Engineering (ICME), JOM Journal of the Minerals, Metals and Materials Society, 60/7, 9-10.
  • [12] SCHMITZ G.J., BENKE S., LASCHET G., APEL M., PRAHL U., FAYEK P et al. 2011, Towards integrative computational materials engineering of steel components, Production Engineering, 5/4, 373-82.
  • [13] SCHMITZ G.J., PRAHL U., eds., 2012, Integrative Computational Materials Engineering: concepts and Integration of a Modular Simulation Platform, Weinheim: WILEY-VCH Verlag.
  • [14] KOLMOGOROV A., 1937, On the statistical theory of the crystallization of metals, Bull. Acad. Sci. USSR, 3/1, 355-9.
  • [15] JOHNSON W.A., MEHL R.F., 1939, Reaction Kinetics in Processes of nucleation and growth, Transactions of the Metallurgical Society of AIME,135/8, 396-415.
  • [16] AVRAMI M., 1939, Kinetics of phase change. I general theory, The Journal of Chemical Physics, 7/12, 1103.
  • [17] DIETER G.E., KUHN H.A., SEMIATIN S.L., eds., 2003, Handbook of workability and process design, ASM International, 410.
  • [18] JONAS J.J., QUELENNEC X., JIANG L., MARTIN É., 2009, The Avrami kinetics of dynamic recrystallization. Acta Materialia, 57/9, 2748-56.
  • [19] BARIANI P.F., DAL NEGRO T., BRUSCHI S., 2004, Testing and modelling of material response to deformation in bulk metal forming, CIRP Annals - Manufacturing Technology, 53/2, 573-95.
  • [20] POLIAK E.I., JONAS J.J,. 1996, A one-parameter approach to determining the critical conditions for the initiation of dynamic recrystallization, Acta Materialia, 44/1, 127-36.
  • [21] BAMBACH M., 2013, Implications from the Poliak-Jonas criterion for the construction of flow stress models incorporating dynamic recrystallization, Acta Materialia, 61/16, 6222-33.
  • [22] FRÖBEL U., APPEL F., 2007, Hot-workability of gamma-based TiAl alloys during severe torsional deformation, Metallurgical and Materials Transactions, A, 38/8, 1817-32.
  • [23] BEYNON J.H., SELLARS C.M., 1992, Modelling Microstructure and its effects during multipass hot rolling, ISIJ international, 32/3, 359-67.
  • [24] BAMBACH M., SEUREN S., 2015, On instabilities of force and grain size predictions in the simulation of multi-pass hot rolling processes, Journal of Materials Processing Technology, 216, 95-113.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5b9dc94b-bac3-4e20-b3ec-08bfd5b4ed92
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.