PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Low Temperature Thermal Activation of Sarulla Natural Zeolite for Ammonia Removal Using Fixed Bed Column Adsorption Process

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A local natural zeolite from Sarulla in North Sumatra has been isolated and activated with low thermal activation process to enhance its ammonia adsorption capacity. The Sarulla Natural Zeolite (SNZ) was prepared through crushing, sieving, washing, and thermal activation at 120 °C for three hours. SNZ was further characterized and tested for ammonia removal using batch and fixed bed column adsorption processes. In the fixed bed column adsorption, the bed height and initial ammonia concentration were used to understand the adsorption process. The batch adsorption result demonstrates the low thermal activation process improves approximately 10% of the adsorption capacity of SNZ. The kinetics study confirmed that the ammonia adsorption mechanism is chemisorption mechanism where the initial concentration plays the role in determining the mass transfer driving force. Furthermore, the rise on bed height do not provide more contact sites and extend the breakthrough time due to lack of flow blockage. The flow blockage limits the contact between zeolite and ammonia which further perform low adsorption capacity. 2 cm of bed height with 150 mg/L of initial concentration exhibit the highest adsorption capacity of 15.3551 mg/g. The result shows that the low thermal activation approach is an effective way to improve the SNZ adsorption capacity.
Rocznik
Strony
354--364
Opis fizyczny
Bibliogr. 34 poz. rys., tab.
Twórcy
autor
  • Department of Environmental Engineering, Faculty of Engineering, Universitas Sumatera Utara, Medan 20155, Indonesia
  • Energy and Advanced Material Manufacturing Laboratory, Faculty of Engineering, Universitas Sumatera Utara, Medan 20155, Indonesia
  • Department of Environmental Engineering, Faculty of Engineering, Universitas Sumatera Utara, Medan 20155, Indonesia
  • Energy and Advanced Material Manufacturing Laboratory, Faculty of Engineering, Universitas Sumatera Utara, Medan 20155, Indonesia
autor
  • Department of Environmental Engineering, Faculty of Engineering, Universitas Sumatera Utara, Medan 20155, Indonesia
Bibliografia
  • 1. Alshameri, A., Yan, C., Al-Ani, Y., Dawood, A.S., Ibrahim, A., Zhou, C., Wang, H., 2014a. An Investigation into the adsorption removal of ammonium by salt activated Chinese (Hulaodu) natural zeolite: Kinetics, isotherms, and thermodynamics. Journal of the Taiwan Institute of Chemical Engineers. 2(2), 554–564. https://doi.org/10.1016/j.jtice.2013.05.008
  • 2. Alshameri, A., Ibrahim, A., Assabri, A.M., Lei, X., Wang, H., Yan, C., 2014b. the investigation into the ammonium removal performance of yemeni natural zeolite: Modification, ion exchange mechanism, and thermodynamics. Powder Technology. 258, 20–31. https://doi.org/10.1016/j.powtec.2014.02.063
  • 3. Anggoro, D.D., Sumantri, I., Buchori, L., 2021. Indonesia’s natural zeolite as an adsorbent for toxic gases in shrimp ponds. Journal of Ecological Engineering. 22(6), 202–208. https://doi.org/10.12911/22998993/137921
  • 4. Ansari, W., Harahap, H., Husin, A., 2021. Fixed-Bed Column Adsorption Performance For Ammonia Removal Using Adsorbent From Zeolite. IOP Conference Series: Materials Science And Engineering. 1122(1) 1–8. https://doi.org/10.1088/1757-899X/1122/1/012076
  • 5. Anh, N.T.V., 2024. Utilization of risk husk and alum sludge to produce an efficient adsorbent composite for recovery of nurtients from wastewater. Applied Science and Engineering Progress, 17(1), 6898. https://doi.org/10/14416/j.asep.2023.08.002
  • 6. Attia, A.A.M., Shouman, M.A.H., Khedr, S.A.A., Hassan, N.A., 2018. Fixed-bed column studies for the removal of Congo red using Simmondsia Chinensis (Jojoba) and coated with chitosan. Indonesian Journal of Chemistry. 18(2), 294–305. https://doi.org/10.22146/ijc.29264
  • 7. Bish, D.L., Carey, B., 2001. Thermal behavior of natural zeolite. Reviews in Mineralogy and Geochemistry, 45(1), 403–452. https://doi.org/10.2138/rmg.2001.45.13
  • 8. Dewi, E.M., Suryaningtyas, D.T., Anwar, S., 2017. Utilization of natural zeolites as Cu(II) and Zn(II) adsorbent. Journal of Tropical Soils, 21(3), 153–160. https://doi.org/10.5400/jts.2016.v21i3.153-160
  • 9. Elysabeth, T., Zulnovri, Ramayanti, G., Setiadi, Slamet., 2019. Modification of lampung and bayah natural zeolite to enhance the efficiency of removal of ammonia from wastewater. Asian Journal of Chemistry, 31(4), 873–878. https://doi.org/10.14233/ajchem.2019.21810
  • 10. Gea, S. Haryono, A., Andriayani, A., Sihombing, J.L., Pulungan, A.N., Nasution, T., Rahayu, R., Hutapea, Y.A., 2020. The effect of chemical activation using base solution with various concentrations towards Sarulla Natural Zeolite. Elkawnie: Journal of Islamic Science and Technology, 6(1), 85–95. https://doi.org/10.22373/ekw.v6i1.6913
  • 11. Han, B., Butterly, C., Zhang, W., He, J., Chen, D., 2021. Adsorbent materials for ammonium and ammonia removal: A review. Journal of Cleaner Production. 283. https://doi.org/10.1016/j.jclepro.2020.124611
  • 12. Huang, J., Kankanamge, N.R., Chow, C., Welsh, D.T., Li, T., Teasdale, P.R., 2017. Removing ammonium from water and wastewater using cost-effective adsorbents: A review. Journal of Environmental Science. 63(19), 174–197. https://doi.org/10.1016/j.jes.2017.09.009
  • 13. Huang, X., Wang, N., Kang, Z., Yang, X., Pan, M., 2022. An investigation into the adsorption of ammonium by zeolite-magnetite composites. Minerals. 12(256), 1–14. https://doi.org/10.3390/min12020256
  • 14. Husin, A., Aruan, F.H., Huda, A., Herlina, N., Manalu, S.P., 2024. Ammonia adsorption process using sarulla natural zeolite from North Sumatera, Indonesia. E3S Web of Conferences. 519(03028), 1–5. https://doi.org/10.1051/e3sconf/202451903028
  • 15. Kuldeyev, E., Seitzhanova, M., Tanirbergenova, S., Tazhu, K., Doszhanov, E., Mansurov, Z., Azat, S., Nurlybaev, R., Berndtsson, R., 2023. Modifying natural zeolites to improve heavy metal adsorption. Water, 15(12), 2215. https://doi.org/10.3390/215122215
  • 16. Liu, P., Zhang, A., Liu, Y., Liu, Z., Liu, X., Yang, L., Yang, Z., 2022. Adsorption mechanism of high-concentration ammonium by Chinese Natural Zeolite with Experimental Optimization and Theoritical Computation, Water, 14(15), 2413. DOI: 10.3390/w14152413.
  • 17. Nagaraju, T.V., Sunil, B.M., Chaudhary, B., Prasad, C.D., Gobinath, R., 2023. Prediction of ammonia contaminants in the aquaculture ponds using soft computing coupled with wavelet analysis. Environmental Pollution, 331(2), 121924. https://doi.org/10.1016/j.envpol.2023.121924
  • 18. Noelaka, Y.A.B., Kalla, E.B.S., Malelak, G.A., Rukman, N.K., 2018. Adsorption of methylene blue using acid activated green color natural zeolite from Ende-Flores, Indonesia. Rasayan Journal of Chemistry, 11(2), 494–504. https://doi.org/10.7324/ RJC.2018.1121994
  • 19. Omitola, O.B., Abonyi, M.N., Akpomie, K.G., Dawodu, F.A., 2022. Adams-bohart, yoon-nelson, and thomas modeling of the fixed-bed continuous column adsorption of amoxicillin onto silver nanoparticle-maize leaf composite. Applied Water Science, 12(94), 1–9. https://doi.org/10.1007/s13201-022-01624-4
  • 20. Patel, H., 2019. Fixed-bed column adsorption study: A comprehensive review. Applied Water Science, 9(45), 1–17. https://doi.org/10.1007/s13201-019-0927-7
  • 21. Pratomo, S.W., Mahatmanti, F.W., Sulistyaningsih, T., 2017. Utilization of H 3PO 4 activated natural zeolite as an adsorbent of Cd(II) metal ions in solution. Indonesian Journal of Chemical Science, 6(2), 161–167 (in Indonesian).
  • 22. Putri, Sella A., Asnawati., Indarti, D. 2019. Optimization of Rhodamin B dyes adsorption on hemicellulose in dynamic systems. BERKALA SAINSTEK, 6(1), 1–6. https://doi.org/10.19184/bst.v7i1.9681 (in Indonesian)
  • 23. Radhika, R., Jayalatha, T., Rekha, K.G., Salu, J., Rajeev, R., Benny, K.G. 2018. Adsorption performance of packed bed column for the removal of perchlorate using modified activated carbon. Process Safety and Environmental Protection, 117, 350–362. https://doi.org/10.1016/j.psep.2018.04.026
  • 24. Selambakkannu, S., Othman, N.A.F., Bakar, K.A., Karim, Z.A., 2019. Adsorption studies of packed bed column for the removal of dyes using amine functionalized radiation induced grafted fiber. SN Applied Science, 1(175), 1–10. https://doi.org/10.1007/s42452-019-0184-2
  • 25. Shaban, M., AbuKhadra, M.R., Nasief, F.M., El-Salam, H.M.A., 2017. Removal of ammonia from aqueous solutions, ground water, and wastewater using mechanically activated clinoptilolite and synthetic zeolite-a: Kinetic and equilibrium studies. Water, Air, & Soil Pollution, 228(450), 1–16. https://doi.org/10.1007/s11270-017-3643-7
  • 26. Sintya, M., 2022. Improving the quality of brackish water using activated carbon and zeolite media. Environmental Health Journal Ruwa Jurai, 15(3), 124–129 (in Indonesian). https://doi.org/10.26630/rj.v15i3.3073
  • 27. Statista. 2024. Production volume of farmed shrimp in Indonesia from 2011 to 2020. URL: https://www.statista.com/statistics/1230592/indonesia-production-volume-of-farmed-shrimp/ Access on Jul 30, 2024.
  • 28. Suryani, P.E., Candra, A.D., 2021. Application of chemical and physical activation methods on natural zeolites as metal adsorbents in the water purification process. SIMETRIS, 15(2), 5–7. (in Indonesian) https://doi.org/10.51901/simetris.v15i2.202
  • 29. Syauqiah, I., Amalia, M., Kartini, H.A., 2011. Analysis of time and stirrer speed variations in heavy metal waste adsorption process with activated carbon. INFO TEKNIK, 12(1), 1, 1–20. (in Indonesian)
  • 30. Tong, D., Zhu, Z., Wu, J., Li, F., Shen, J., Cao, J., Tang, Y., Liu, G., Hu, L., Shi, W., 2023. Impacts of ammonia stress on different pacific whiteleg shrimp Litopenaeus vannamei families and the underlying adaptive mechanisms. Aquatic Toxicology, 259, 106549. https://doi.org/10.1016/j.aquatox.2023.106549
  • 31. Tran, H.D., Phuc, H.N., Phuong, P.V.H., Thien, L.N.P., Nguyen, T.L., Tran, U.P.N., Dan, V.-N. 2024. A proposed model for breaking curves of methylene blue adsorption on biochar. Chemi, Biochem,. Eng. Q., 38(2), 153–164. https://doi.org/10.15255/CABEQ.2023.2280
  • 32. Wang, H., Gui, H., Yang,W., Li, D., Tan, W., Yang, M., Barrow, C.J., 2014. Ammonia nitrogen removal from aqueous solution using functionalized zeolite columns. Desalination and Water Treatment. 52: 753–758. https://doi.org/10.1080/19443994.2013.827316
  • 33. Wati, L.A., 2018. Analyzing the Development of Indonesia Shrimp Industry. IOP Conference Series: Earth and Environmental Science. 137, 012101. https://doi.org/10.1088/1755-1315/137/1/012101
  • 34. Zhu, Y., Chang, H., Yan, Z., Liu, C., Liang, Y., Qu, F., Liang, H., Vidic, R.D. 2024. Review of ammonia recovery and removal from wastewater using hydrophobic membrane distillation and membrane contactor. Separation and Purification Technology, 328, 125094. https://doi.org/10.1016/j.seppur.2023.125094
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5b90fa72-e504-40d0-9920-f545f89fbebd
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.